New method for associating genetic variation with crop traits

Jul 22, 2012

A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.

The technique, published in the journal Nature Biotechnology, links important agronomic traits in with active regions of the . Instead of requiring knowledge of the crop's complete genome, it identifies only expressed genes.

"For many crop plants, markers are still lacking because of the complexity of some plants' genomes and the very high costs involved," said Professor Ian Bancroft, who led the study at the John Innes Centre. "We have succeeded in developing markers based on the sequences of expressed genes, widening the possibilities for accelerated breeding through marker assisted selection."

Expressed genes are converted from genomic DNA to mRNA. Working with mRNA means that there is no need to generate a from DNA, making the techniques applicable to a wide range of crops, even those with complex genomes, such as oilseed rape and wheat. It also enables the development of advanced marker resources for less studied that are important for developing countries or have specific medicinal or industrial properties.

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Peter Werner of plant breeding company KWS UK Ltd and part of the research team said "KWS UK has been delighted to be involved with this ground breaking developmental research. We will be increasingly using this approach to further improve the speed and reliability of our breeding towards the continued improvement of yield and quality of our new varieties produced within the KWS group."

In partnership with the Cambridge-based bioinformatics company Eagle Genomics Ltd, the technology, called TraitTag, is being offered as a service to plant breeders. Markers associated with measured trait variation can be identified in essentially any crop species, including traits controlled at the level of gene expression variation rather than gene sequence variation, such as those with an epigenetic basis.

In an example of such an application, the researchers are now working with plant breeding company Limagrain to produce reliable markers for hybrid performance in oilseed rape. Marker-assisted breeding for this complex trait has previously been unsuccessful due to a lack of available markers and appropriate technology.

Using bioinformatics techniques it is possible to associate variation in both the sequences of expressed and their relative abundance in the mRNA with important traits, and then produce markers for these traits that breeders can use in their breeding programmes. Their research was published in the journal Nature Biotechnology and was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Explore further: Small doses of resistant starch encourage the growth of beneficial gut fauna

More information: ‘Associative Transcriptomics of traits in the polyploid crop species Brassica napus’ Harper et al will be published on Friday July 22nd in Nature Biotechnology, doi:10.1038/nbt.2302

Related Stories

Decoding of wheat genome will aid global food shortage

Aug 26, 2010

Wheat production world-wide is under threat from climate change and an increase in demand from a growing human population. Liverpool scientists, in collaboration with the University of Bristol and the John ...

Science to help rice growers affected by Japan's tsunami

Jan 22, 2012

Under a year since a huge tsunami inundated paddy fields in Japan with salty sludge, scientists are near to developing locally-adapted, salt-tolerant rice. Following a Japan-UK research collaboration, a new ...

Recommended for you

Solving the Hox Specificity Paradox

Jan 22, 2015

The remarkable diversity of anatomical features along the body axis of animals—the differences between the head, the thorax and the abdomen, for example—is determined by proteins in the Hox family. But ...

The Facebook of plant science

Jan 21, 2015

By building PhotosynQ - a handheld device with sensors and an online data-sharing and analysis platform - a team of Michigan State University researchers is creating the plant-science equivalent of Facebook.

New computation method helps identify functional DNA

Jan 21, 2015

Striving to unravel and comprehend DNA's biological significance, Cornell scientists have created a new computational method that can identify positions in the human genome that play a role in the proper ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.