Researchers switch magnetic state and electric resistance of a single molecule on and off

July 4, 2012
Using a scanning tunneling microscope tip, defined electricity pulses were applied to the molecule, which switches between different magnetic states. (photo: CFN/KIT)

One bit of digital information stored on a hard disk currently consists of about 3 million magnetic atoms. Researchers from Germany and Japan have now developed a magnetic memory with one bit per molecule. By an electric pulse, the metal-organic molecule can be switched reliably between a conductive, magnetic state and a low-conductive, non-magnetic state. This novel correlation for molecules is now reported in the Nature Communications journal. 

“The superparamagnetic effect prevents smaller bit sizes from being reached in a hard disk," explains Toshio Miyamachi, first author of the study and researcher at the Center for Functional Nanostructures (CFN) of Karlsruhe Institute of Technology (KIT). This super-paramagnetic effect implies that magnetic memory crystals are in-creasingly susceptible to thermal switching with decreasing size. Consequently, information may soon be lost.

“We chose another approach and placed a single magnetic iron atom in the center of an consisting of 51 atoms. The organic shell protects the information stored in the central atom.” Apart from the ultimate density of one bit per molecule, this type of memory based on so-called spin crossover molecules also has the advantage of the writ-ing process being reliable and purely electric.

“Using a scanning tunneling microscope, we applied defined electricity pulses to the nanometer-sized molecule,” adds Wulf Wulfhe-kel, head of the research group at KIT’s Physikalisches Institut. “This reproducibly changes not only the magnetic state of the iron, but also the electric properties of the molecule.” Hence, the two magnet-ic configurations lead to varying conductances, such that the mag-netic state of the molecule can be determined easily by a simple resistance measurement.

The present study reports the fundamentals and shows the principle feasibility and advantages of memories consisting of spin crossover . “These memristive and spintronic properties combined in a molecule will open up a new field of research,” the researchers are convinced. Memristors are memories that store information in the form of resistance variations. Spintronics uses the magnetic spin of individual particles for information processing.

Explore further: Smallest magnetic field sensor in the world developed

More information: T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G. Rogez, T.K. Yamada, P. Ohresser, E. Beaure-paire, W. Wulfhekel, Robust spin crossover and memristance across a single molecule. Nat. Commun. , doi: 10.1038/ncomms1940

Related Stories

Smallest magnetic field sensor in the world developed

February 22, 2011

Further development of modern information technology requires computer capacities of increased efficiency at reasonable costs. In the past, integration density of the relevant electronic components was increased constantly. ...

Team controls thermal fluctuations with spin current

November 17, 2011

( -- A team of researchers from the NIST Center for Nanoscale Science and Technology, the University of Muenster, and West Virginia University have demonstrated control of magnetic thermal fluctuations using current. ...

The origin of organic magnets

March 2, 2012

Electrical engineers are starting to consider materials made from organic molecules -- including those made from carbon atoms -- as an intriguing alternative to the silicon and metals used currently in electronic devices, ...

Researchers switch magnetism of individual molecules

June 14, 2012

Using individual molecules instead of electronic or magnetic memory cells would revolutionise data storage technology, as molecular memories could be thousand-fold smaller. Scientists of Kiel University took a big step towards ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 04, 2012
To me it just looks like a pair of breasts.

Maybe all the Higgs' news as just got me all horny with potential new physics discoveries

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.