Fused polymer-based multi-component fibers provide well-defined domains for cell co-culture in tissue engineering

Jul 04, 2012
Multicomponent fibers obtained from multiple polyelectrolyte interfaces. © IBN

(Phys.org) -- Polymer fibers play a central role in the production of biomaterials for tissue engineering applications. Generated from self-assembling polyelectrolytes, these materials provide matrices for cells to grow and differentiate. Unfortunately, polymer fibers cannot encapsulate different cell types in a spatially defined manner for culture, thereby hindering their implementation in native tissue mimics.

To overcome these limitations, Andrew Wan and Jackie Y. Ying at the A*STAR Institute of Bioengineering and Nanotechnology and co-workers have developed a method that fuses several fibers from multiple polyelectrolyte interfaces. This method creates matrices composed of well-defined, spatially patterned domains at the scale, facilitating cell co-culture within the same fiber.

Ying explains that polyelectrolyte-based fibers have previously yielded three-dimensional scaffolds for , inspiring the team to fuse these materials to achieve co-culture.

The team’s goal is to exploit the patterning ability of their method to give structures that emulate native tissues such as the liver. “Many cell types are involved in the liver, and they are spatially patterned with respect to each other to achieve liver function,” adds Wan.

Unlike typical techniques deployed to manufacture multi-component fibers, the interfacial polyelectrolyte complexation adopted by Wan and Ying’s team is a gentle, water-based chemical process. “When two oppositely charged polyelectrolytes come into contact with each other, a complex forms at their interface,” explains Wan. “Upward drawing of this complex leads to the formation of a fiber.”

The researchers flanked a droplet of polyelectrolyte solution with two droplets of the oppositely charged polyelectrolyte, creating two interfaces from which two fibers were drawn and fused. Upon contact, the wet fibers zipped together, forming a Y-shape pattern over the droplets and producing a two-component fiber. By increasing the number of interfaces to three and four, the team obtained three- and four-component fibers.

Assessments of the ability of the fibers to enable co-culture in distinct domains showed that bone-forming cells encased in the outer layers of four-component fibers exclusively propagated and accumulated in those layers. Further experiments were carried out on fibers that consisted of a central core containing endothelial cells surrounded by outer layers filled with liver cells. The liver cells closely aggregated along the fiber without spreading to the core, where the endothelial cells had formed blood vessel-like structures.

The researchers are currently investigating ways to design better mimics of native tissue using their process. They are also planning on using the multi-component to study the influence of cellular microenvironment on cancer cell behavior.

Explore further: Research pinpoints role of 'helper' atoms in oxygen release

More information: Wan, A. C. A., Leong, M. F., Toh, J. K. C., Zheng, Y. & Ying, J. Y. Multicomponent fibers by multi-interfacial polyelectrolyte complexation. Advanced Healthcare Materials 1, 101–105 (2012). dx.doi.org/10.1002/adhm.201100020

add to favorites email to friend print save as pdf

Related Stories

New process converts polyethylene into carbon fiber

Mar 27, 2012

(PhysOrg.com) -- Common material such as polyethylene used in plastic bags could be turned into something far more valuable through a process being developed at the Department of Energy's Oak Ridge National ...

Tube-shaped solar cells could be woven into clothing

Mar 01, 2012

(PhysOrg.com) -- Titania semiconducting nanorods grown on the surface of carbon fibers look more like bristles on a tiny hairbrush than a solar cell, but the novel configuration could have several advantages ...

Spinning a new yarn: silicone fibers with living organisms

Nov 20, 2006

In a feat once as unlikely as the miller's daughter of fairytale fame spinning straw into gold, scientists in the United Kingdom have spun fine threads of biocompatible silicone that contain living human brain cells. The ...

Recommended for you

New star-shaped molecule breakthrough

Sep 22, 2014

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0