Fish learn to cope in a high CO2 world

July 3, 2012

Some coral reef fish may be better prepared to cope with rising CO2 in the world's oceans – thanks to their parents.

Researchers at the ARC Centre of Excellence for Coral Reef Studies (CoECRS) today reported in the journal Nature Climate Change, encouraging new findings that some may be less vulnerable to high CO2 and an acidifying ocean than previously feared.

"There has been a lot of concern around the world about recent findings that baby fish are highly vulnerable to small increases in acidity, as more CO2 released by human activities dissolves into the oceans," says Dr Gabi Miller of CoECRS and James Cook University.

"Our work with anemone fish shows that their babies, at least, can adjust to the changes we expect to occur in the oceans by 2100, provided their parents are also raised in more acidic water."

"Human activity is expected to increase the acidity of the world's oceans by 0.3 to 0.4 pH by the end of this century, on our present trends in CO2 emissions," co-researcher Prof Philip Munday says.

"Previous studies, and our own research, have shown that growth and survival of juvenile fish can be seriously affected when the baby fish are exposed to these sorts of CO2 and pH levels," he says.

"However when we exposed both parents and their offspring in more acidic water we found that the anemone fish, at least, were able to compensate for the change" says Dr Miller. Whether this effect lasts all their lives, remains to be seen." she adds.

How parent fish actually pass on this ability to deal with acidity to their offspring is still a mystery, says Prof Munday. "The time interval is too short for it to be genetic adaptation in the normal sense. However, it's an important parental effect that we need to factor in as we assess the vulnerability of the world's fish stocks to the planet-wide changes in ocean chemistry that humans are now causing."

Based on evidence from past major extinction events, scientists have long feared that the acidity caused by the release of high levels of CO2 could cause havoc among sea-life, especially those which depend on calcium to form their bones and shells. New research has also shown that higher CO2 levels can cause the nervous systems of some marine species to malfunction.

The recent increase in ocean acidity due to human activity in releasing carbon – about 0.1 of a pH unit over the last half century – is thought to be steeper even than in any of the past major extinctions, which eliminated between 70-90 per cent of marine species.

"What this research shows is that some species, at least, may have more capacity to cope than we thought – which could help buy time for humanity to bring its CO2 emission under control," Prof Munday says.

However Dr Miller cautions that anemone fish are particularly hardy by nature, and may not be typical of all fish in the ocean. "They are definitely not the 'canary in the coal mine', as they have quite a large ability to cope with changed conditions anyway," she says. "We need to extend these studies to other types of fish, especially those which humans rely on for food."

Both scientists warn that the major impact on acidification is likely to be on the corals themselves, and the reefs which they form, which in turn provide the habitat for small fish such as the anemone fish. The fate of the world's reefs under a high human CO2 regime remains highly uncertain, they caution.

Their paper 'Parental environment mediates impacts of elevated CO2 on a coral reef fish' by Gabrielle M. Miller, Sue-Ann Watson, Jennifer M. Donelson, Mark I. McCormick and Philip L. Munday appears in the online issue of the journal Nature Climate Change.

The team will present a paper on their work to the 12th International Coral Reef Symposium, Cairns, Australia on July 13, 2012.

Explore further: Carbon emissions threaten fish populations

Related Stories

Carbon emissions threaten fish populations

July 7, 2010

Humanity's rising CO2 emissions could have a significant impact on the world's fish populations according to groundbreaking new research carried out in Australia.

Ocean acidification leaves clownfish deaf to predators

June 1, 2011

(PhysOrg.com) -- Since the Industrial Revolution, over half of all the CO2 produced by burning fossil fuels has been absorbed by the ocean, making pH drop faster than any time in the last 650,000 years and resulting in ocean ...

Increased acidity not an even test for coral reefs

November 10, 2011

Coral reefs can both positively and negatively influence the acidity of their surrounding seawater. That is the take-home message of two papers recently published in the international journal Global Change Biology, by a group ...

When the heat's on, fish can cope

December 5, 2011

Australian scientists have discovered that some tropical fish have a greater capacity to cope with rising sea temperatures than previously thought – by adjusting over several generations.

Carbon dioxide affecting fish brains: study

January 16, 2012

Rising human carbon dioxide emissions may be affecting the brains and central nervous systems of sea fish, with serious consequences for their survival, according to new research.

Some corals could survive a more acidic ocean

April 2, 2012

Corals may be better placed to cope with the gradual acidification of the world's oceans than previously thought – giving rise to hopes that coral reefs might escape climatic devastation.

Recommended for you

Clues from ancient Maya reveal lasting impact on environment

September 3, 2015

Evidence from the tropical lowlands of Central America reveals how Maya activity more than 2,000 years ago not only contributed to the decline of their environment but continues to influence today's environmental conditions, ...

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.