Has the speediest pulsar been found?

Jun 28, 2012
Using Chandra, XMM-Newton, and the Parkes radio telescope, researchers have found evidence for what may be the fastest moving pulsar ever seen. The large field of view contains XMM-Newton data (purple) that contains supernova remnant, which as been combined infrared and optical data (colored red, green and blue that appears as white). The Chandra image in bright green shown in the inset ("X-ray close-up") reveals a comet-shaped X-ray source well outside the boundary of the supernova remnant. Astronomers think object is a pulsar that may be moving at about 6 million miles per hour, which would make it one of the fastest ever detected if confirmed. Credit: X-ray: NASA/CXC/UC Berkeley/J. Tomsick et al and ESA/XMM-Newton; Optical: DSS, 2MASS/UMass/IPAC-Caltech/NASA/NSF

(Phys.org) -- NASA's Chandra X-ray Observatory and ESA's XMM-Newton in space, and the Parkes radio telescope in Australia -- may have found the fastest moving pulsar ever seen.

The evidence for this potentially record-breaking speed comes, in part, from the features highlighted in this . X-ray observations from Chandra (green) and (purple) have been combined with from the 2MASS project and optical data from the (colored red, green and blue, but appearing in the image as white).

The large area of diffuse X-rays seen by XMM-Newton was produced when a massive star exploded as a supernova, leaving behind a debris field, or supernova remnant known as SNR MSH 11-16A. Shocks waves from the supernova have heated surrounding gas to several million degrees Kelvin, causing the remnant to glow brightly in X-rays.

The Chandra image shown in the inset ("X-ray close-up") reveals a comet-shaped X-ray source well outside the boundary of the supernova remnant. This source consists of a point-like object with a long tail trailing behind it for about 3 light years. The bright star nearby and also the one in SNR MSH11-16A are both likely to be foreground stars unrelated to the supernova remnant.

Credit: NASA/CXC/UC Berkeley/J.Tomsick et al & ESA/XMM-Newton

The point-like X-ray source was discovered by the International Gamma-Ray Astrophysics Laboratory, or INTEGRAL, and is called IGR J11014-6103 (or IGR J11014 for short). It may be a rapidly spinning, super-dense star (known as a "pulsar", a type of neutron star) that was ejected during the explosion. If so, it is racing away from the center of the supernova remnant at millions of miles per hour.

The favored interpretation for the tail of X-ray emission is that a pulsar wind nebula, that is, a "wind" of high-energy particles produced by the pulsar, has been swept behind a bow shock created by the pulsar's high speed. (A similar case was seen in another object known as PSR B1957+20.

The elongated emission is pointing towards the center of MSH 11-61A where the pulsar would have been formed, supporting the idea that the Chandra image is of a pulsar wind nebula and its . Another interesting feature of the Chandra image, also seen with XMM-Newton, is the faint X-ray tail extending to the top-right. The cause of this feature is unknown, but similar tails have been seen from other pulsars that also do not line up with the pulsar's direction of motion.

Based on earlier observations, astronomers estimate that the age of MSH 11-61A is approximately 15,000 years, and it lies at a distance of about 30,000 light years away from Earth. Combining these values with the distance that the pulsar has appeared to have traveled from the center of the MSH 11-61A, astronomers estimate that IGR J11014 is moving at a speed between 5.4 million and 6.5 million miles per hour.

The only other neutron star associated with a supernova remnant that may rival this in speed is the candidate found in the supernova remnant known as G350.1-0.3. The speed of the neutron star candidate in this system is estimated to lie between 3 and 6 million miles per hour.

The high speeds estimated for both IGR J11014 and the neutron star candidate in G350.1-0.3 are preliminary and need to be confirmed. If they are confirmed, explaining the high speeds of the neutron star presents a severe challenge to existing models for supernova explosions.

One important caveat in the conclusion that IGR J11014 may be the fastest moving pulsar is that pulsations have not been detected in it during a search with the Commonwealth Scientific and Industrial Research Organization (CSIRO) . This non-detection is not surprising for a pulsar located about 30,000 away.

However, there are other pieces of evidence that support the pulsar interpretation. First, the lack of detection of a counterpart to the X-ray source in optical or infrared images supports the idea that it is a pulsar, since such objects are very faint at these wavelengths. Also, there are no apparent differences in the brightness of the source between XMM-Newton observations in 2003 and the Chandra observations in 2011, behavior that is expected if IGR J11014 is a pulsar. Finally, the X-ray spectrum of the source, that is, its signature in energy, is similar to what astronomers expect to see for a .

Explore further: Pushy neighbors force stellar twins to diverge

More information: These results were published in the May 10, 2012 issue of The Astrophysical Journal Letters.

Related Stories

Celestial bauble intrigues astronomers

Dec 20, 2011

(PhysOrg.com) -- With the holiday season in full swing, a new image from an assembly of telescopes has revealed an unusual cosmic ornament. Data from NASA's Chandra X-ray Observatory and ESA's XMM-Newton have ...

A pulsar's mysterious tail

Jul 14, 2011

(PhysOrg.com) -- A spinning neutron star is tied to a mysterious tail -- or so it seems. Astronomers using NASA's Chandra X-ray Observatory have found that this pulsar, known as PSR J0357+3205 (or PSR J0357 ...

A spinning neutron star is tied to a mysterious tail

Aug 18, 2011

(PhysOrg.com) -- A spinning neutron star is tied to a mysterious tail -- or so it seems. Astronomers using NASA's Chandra X-ray Observatory found that this pulsar, known as PSR J0357+3205 (or PSR J0357 for ...

Pushing the envelope

Oct 05, 2010

(PhysOrg.com) -- G327.1-1.1 is the aftermath of a massive star that exploded as a supernova in the Milky Way galaxy.

Remnant of an explosion with a powerful kick?

Feb 02, 2012

(PhysOrg.com) -- Vital clues about the devastating ends to the lives of massive stars can be found by studying the aftermath of their explosions. In its more than twelve years of science operations, NASA's ...

The case of the neutron star with a wayward wake

Jun 01, 2006

A long observation with NASA's Chandra X-ray Observatory revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location ...

Recommended for you

Astronomers: 'Tilt-a-worlds' could harbor life

10 hours ago

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

18 hours ago

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

Astronomers suggest more accurate star formation rates

Apr 10, 2014

(Phys.org) —Astronomers have found a new way of predicting the rate at which a molecular cloud—a stellar nursery—will form new stars. Using a novel technique to reconstruct a cloud's 3-D structure, ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

elektron
1 / 5 (1) Jun 28, 2012
The headline is misleading, I expected to be informed of a phenomenally rapid rotational speed of a pulsar, which is after all why they are named 'pulsar'. Instead I find it's the speed of an ejected supposed neutron star. Hardly worth letting my coffee go cold.
frajo
not rated yet Jun 29, 2012
Yes, I've been misled, too, but - nevermind whether it's a pulsar or not - it is a fascinating question what "machinery" could accelerate a star so much without ripping it apart.
Fleetfoot
5 / 5 (1) Jul 04, 2012
The gravitational binding is sufficient to keep it intact. Supernova models generally suggest ignition is likely to be off centre and lesser speeds are common. If so, you expect to see some conical structure in remnant from the recoil. If that is the central tringular part, the location of the progenitor might be quite close to the lower right side nearest the NS. I haven't read the paper to check that yet though.

More news stories

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

Vegetables on Mars within ten years?

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...