A nebula that extends its hand into space

The Gum Nebula is an emission nebula almost 1400 light-years away. It's home to an object known as "God's Hand" among the faithful. The rest of us call it CG 4.

New accreting millisecond X-ray pulsar discovered

Astronomers report the discovery of a new pulsar using the Spektr-RG space observatory. The newfound object, designated SRGA J144459.2−604207 (or SRGA J1444 for short), turns out to be a bursting accreting millisecond X-ray ...

Neutron stars could be capturing primordial black holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to explain this for years. One of the more interesting ideas comes from a team of astronomers in Europe and invokes dark matter, neutron stars, ...

Three new millisecond pulsars detected with MeerKAT

Using the MeerKAT radio telescope in South Africa, an international team of astronomers has detected three new millisecond pulsars in the globular cluster Messier 62 (also known as NGC 6266). The finding was detailed in a ...

Another clue into the true nature of fast radio bursts

Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others ...

page 1 from 38


Pulsars are highly magnetized, rotating neutron stars that emit a beam of electromagnetic radiation. The observed periods of their pulses range from 1.4 milliseconds to 8.5 seconds. The radiation can only be observed when the beam of emission is pointing towards the Earth. This is called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name. Because neutron stars are very dense objects, the rotation period and thus the interval between observed pulses are very regular. For some pulsars, the regularity of pulsation is as precise as an atomic clock. Pulsars are known to have planets orbiting them, as in the case of PSR B1257+12. Werner Becker of the Max Planck Institute for Extraterrestrial Physics said in 2006, "The theory of how pulsars emit their radiation is still in its infancy, even after nearly forty years of work."

This text uses material from Wikipedia, licensed under CC BY-SA