Scientists see new hope for restoring vision with stem cell help

Jun 13, 2012
This is a human ES cell-derived optic cup generated in our self-organization culture (culture day 26). Bright green, neural retina; off green, pigment epithelium; blue, nuclei; red, active myosin (strong in the inner surface of pigment epithelium). Credit: Nakano et al. Cell Stem Cell Volume 10 Issue 6

Human-derived stem cells can spontaneously form the tissue that develops into the part of the eye that allows us to see, according to a study published by Cell Press in the 5th anniversary issue of the journal Cell Stem Cell. Transplantation of this 3D tissue in the future could help patients with visual impairments see clearly.

"This is an important milestone for a new generation of regenerative medicine," says senior study author Yoshiki Sasai of the RIKEN Center for Developmental Biology. "Our approach opens a new avenue to the use of human stem cell-derived complex tissues for therapy, as well as for other related to and ."

During development, light-sensitive tissue lining the back of the eye, called the retina, forms from a structure known as the optic cup. In the new study, this structure spontaneously emerged from (hESCs)—cells derived from human embryos that are capable of developing into a variety of tissues—thanks to the cell culture methods optimized by Sasai and his team.

The hESC-derived cells formed the correct 3D shape and the two layers of the optic cup, including a layer containing a large number of light-responsive cells called photoreceptors. Because retinal degeneration primarily results from damage to these cells, the hESC-derived tissue could be ideal transplantation material.

Beyond the clinical implications, the study will likely accelerate the acquisition of knowledge in the field of . For instance, the hESC-derived optic cup is much larger than the optic cup that Sasai and collaborators previously derived from mouse , suggesting that these cells contain innate species-specific instructions for building this eye structure. "This study opens the door to understanding human-specific aspects of eye development that researchers were not able to investigate before," Sasai says.

The anniversary issue containing Sasai's study will be given to each delegate attending the 2012 ISSCR meeting in Yokohama, Japan. To highlight the ISSCR meeting and showcase the strong advances made by Japanese scientists in the stem cell field, the issue will also feature two other papers from Japanese authors, including the research groups of Akira Onishi and Jun Yamashita. In addition, the issue contains a series of reviews and perspectives from worldwide leaders in stem cell research.

Explore further: Nature, nurture, or physics? Researchers answer question about nematode behavior

More information: Nakano et al.: "Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs." DOI 10.1016/j.stem.2012.05.009

Related Stories

The self-made eye: Formation of optic cup from ES cells

Apr 06, 2011

Groundbreaking research from the RIKEN Center for Developmental Biology (CDB) shows how mouse stem cells spontaneously form into optic cups, the precursors of eyes. A report on this research, published this week in Nature, sheds ...

Insights into the story of the eye

Jul 04, 2011

(PhysOrg.com) -- Although it is well established that embryonic stem cells (ESCs) have the capacity to develop into every adult cell type in the body, mysteries abound regarding the process by which the differentiation ...

Researchers grow pituitary glands from embryonic stem cells

Nov 10, 2011

(Medical Xpress) -- A new study published in Nature reports that scientists have been able to grow working pituitary glands from embryonic stem cells from mice. When these were transplanted into mice with defects in the pi ...

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Recommended for you

C. difficile needs iron, but too much is hazardous

19 hours ago

Those bacteria that require iron walk a tightrope. Iron is essential for their growth, but too much iron can damage DNA and enzymes through oxidation. Therefore, bacteria have machinery to maintain their ...

Researchers discover strong break on cell division

19 hours ago

The protein complex SWI/SNF that loosens tightly wrapped up DNA is also a strong inhibitor of cell division, at the time that cells take on specialized functions. Professor Sander van den Heuvel and PhD researcher ...

A checkpoint enzyme for flawless cell division

19 hours ago

The error-free distribution of genetic material during cell division is important for preventing the development of tumor cells. Prof. Erich Nigg's research group at the Biozentrum, University of Basel, has ...

Together bacteria invade antibiotic landscapes

19 hours ago

Antibiotics kill bacteria – or at least they are supposed to, although unfortunately this does not always result in a cure. Scientists at TU Delft's Kavli Institute of Nanoscience have discovered that bacteria ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.