Molecular controller switches off genetic material

Jun 11, 2012
Molecular controller switches off genetic material

(Phys.org) -- Genetic material has many inactive sections that are of major importance for cell identity and genome stability. The HP1 protein takes on key functions in shutting down such genomic sequences. In the latest issue of Molecular Cell, in a collaborative effort from the Friedrich Miescher Institute for Biomedical Research (FMI) and the Biozentrum of the University of Basel, researchers show how HP1 functions in repressing the genome at the molecular level.

The genetic material in our cells consists of both active and inactive areas. While the genes in the active areas can be read like an open book, the inactive sections remain under lock and key. These functionally conserved and compacted areas of the genome are important for as well as for the stability and correct distribution of during cell division. They are specified by biochemical modifications of the genetic material itself or by histones, the proteins around which DNA is wrapped. A protein originally identified in flies as Heterochromatin Protein 1 (HP1) binds particularly modified histones with high specificity and guarantees inactivation of the closed-off areas.

HP1 monitors the inactivation of genetic material

HP1 proteins bind specifically marked histone proteins and shut down the underlying genomic sequences. Using a combination of yeast and biophysical approaches, Marc Bühler and his team at the FMI together with the structural biologists in Sebastian Hiller's team at the Biozentrum show how this process works at the molecular level. Rather than by just one single HP1 protein, the role of the watchdog is taken by a collective of such proteins, which bind to the histone in a continuous relay. In so doing, HP1 intercepts unwanted RNA transcripts of the repressed and escorts these molecules to the cellular machinery that degrades them. At that same time, a new HP1 occupies the vacated space on the histone. This continual changeover guarantees that RNA transcripts emanating from supposedly inactive regions of the genome are continuously destroyed.

Dynamic interactions

Biophysical measurements show how HP1 dynamically monitors the chromatin situation. This dynamic cycling allows the cell to control gene deactivation on two different levels at the same time. "Our findings illustrate the importance of HP1 in yeast," comments Claudia Keller, PhD student in Marc Bühler's laboratory. "However, HP1 has persisted throughout evolution and is present in human cells as well. In the future we will be aiming at a better understanding of how the protein functions in man, and will investigate the structure of HP1 in greater detail."

Explore further: Scientists throw light on the mechanism of plants' ticking clock

More information: Keller C, et al. (2012). HP1Swi6 mediates the recognition and destruction of heterochromatic RNA transcripts. Molecular Cell, doi:10.1016/j.molcel.2012.05.009

Related Stories

New study bolsters beliefs about DNA repair

Nov 17, 2008

Aucott et al. report the first in vivo experiments on the heterochromatin protein 1 (HP1) family, which sidles up to silent DNA. The results, to be published in the Nov. 17 issue of the Journal of Cell Biology, add to the ...

New role for phosphorylation in heterochromatin

Mar 09, 2011

A great many cellular processes are switched on or off by the modification of a given enzyme or other protein by addition of a phosphate molecule, known as phosphorylation. This regulatory activity occurs ...

Core tenets of the 'histone code' are universal

Sep 06, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Live from the scene: Biochemistry in action

Aug 08, 2011

Researchers can now watch molecules move in living cells, literally millisecond by millisecond, thanks to a new microscope developed by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, ...

Histone modifications control accessibility of DNA

Jul 14, 2010

(PhysOrg.com) -- n an advanced online publication in Nature Structural & Molecular Biology scientist from Dirk Schübeler's group from the Friedrich Miescher Institute for Biomedical Research provide a geno ...

Regulating the nuclear architecture of the cell

Dec 10, 2006

An organelle called the nucleolus resides deep within the cell nucleus and performs one of the cell's most critical functions: it manufactures ribosomes, the molecular machines that convert the genetic information ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0