New study bolsters beliefs about DNA repair

November 17, 2008

Aucott et al. report the first in vivo experiments on the heterochromatin protein 1 (HP1) family, which sidles up to silent DNA. The results, to be published in the Nov. 17 issue of the Journal of Cell Biology, add to the evidence that the different versions of the proteins help cells fix broken DNA.

The function of HP1 proteins has puzzled researchers. The proteins, which come in three forms in mammals, cozy up to heterochromatin—the tightly wound sections of DNA where genes are usually inactive. Early studies indicated that the proteins' job was to turn genes off. But recent work suggested that the proteins are essential for repairing damaged DNA. These results came from in vitro studies, however, and the proteins' powers in vivo remained uncertain.

Aucott et al. created the first mouse strain missing one of the HP1 versions, HP1b. The animals die shortly after birth because their lungs don't inflate. The rodents show brain defects as well. Large numbers of neurons die, for example, and the neural stem cells in the cortex divide sluggishly. Both effects could arise from unfixed DNA. When the researchers grew brain cells from HP1b-lacking mice in culture, they saw clear indications of genomic instability that can result from faulty DNA repair, including unpaired sister chromatids that separated prematurely and even extra sets of chromosomes. The HP1 proteins latch onto the methylated version of the H3 histone, but how this interaction promotes repair is an unanswered question.

Source: Rockefeller University

Explore further: Faster, not stronger: How a protein regulates gene expression

Related Stories

Core tenets of the 'histone code' are universal

September 6, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

New role for phosphorylation in heterochromatin

March 9, 2011

A great many cellular processes are switched on or off by the modification of a given enzyme or other protein by addition of a phosphate molecule, known as phosphorylation. This regulatory activity occurs widely in the cytoplasm, ...

Molecular controller switches off genetic material

June 11, 2012

(Phys.org) -- Genetic material has many inactive sections that are of major importance for cell identity and genome stability. The HP1 protein takes on key functions in shutting down such genomic sequences. In the latest ...

Regulating the nuclear architecture of the cell

December 10, 2006

An organelle called the nucleolus resides deep within the cell nucleus and performs one of the cell's most critical functions: it manufactures ribosomes, the molecular machines that convert the genetic information carried ...

Recommended for you

Study into who is least afraid of death

March 24, 2017

A new study examines all robust, available data on how fearful we are of what happens once we shuffle off this mortal coil. They find that atheists are among those least afraid of dying... and, perhaps not surprisingly, ...

Astronomers identify purest, most massive brown dwarf

March 24, 2017

An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known. The object, known as SDSS J0104+1535, is ...

Controlling ice formation

March 24, 2017

(Phys.org)—Researchers have demonstrated that ice crystals will grow along straight lines in a controlled way on microgrooved surfaces. Compared to the random formation of ice crystals on smooth surfaces, the ice on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.