European researchers crack embryonic stem cells mystery

Jun 19, 2012
Europeans crack embryonic stem cells mystery
Credit: Shutterstock

European researchers discover that embryonic stem cell properties are impacted by the laboratory conditions used to grow them.

In their groundbreaking study, a European team of researchers evaluated embryonic stem cells grown in a pure undifferentiated state. The use of next generation sequencing technology enabled them to analyse (i.e. ) and modifications (i.e. epigenome). The study is presented in the journal Cell. The results pinpoint key differences between pure stem cells and embryonic stem cells grown in laboratory settings.

What allows embryonic stem cells to stay pluripotent? Researchers have been investigating this mystery for some time. Now a team of researchers from Germany, the Netherlands and the United Kingdom provide key answers, giving us information we need to know about how cells are controlled and what is the optimal way to grow them. The findings overturn previous reports suggesting that embryonic stem cells are both unstable and primed to differentiate. This information could help lead to the development of new and effective treatments.

Researchers from Nijmegen Centre for Molecular (NCMLS) and Radboud University in the Netherlands, as well as the Wellcome Trust Centre for , Stem Cell Institute and the University of Cambridge in the United Kingdom, and Technische Universität Dresden in Germany confirmed that transcriptome analysis allows scientists to identify which genes are turned on or off inside the cells. The gene's level of activity is also calculated through this method. Meanwhile, epigenome analysis provides researchers insight into how genes are controlled. This study went a step further by unlocking the mystery of how embryonic stem cells maintain their pluripotency, which experts describe as the capacity to make various cell types.

Through this study, researchers obtained key reference information in their quest to create a novel kind of human pluripotent stem cell equivalent to mouse embryonic stem cells. According to the team, the data represents the ground state of pluripotency.

Commenting on the results of the study, EUROSYSTEM ('European consortium for systematic stem cell biology') coordinator Austin Smith said: "These findings show how much we are still learning about stem cells. They also point to an underlying difference between true isolated from mice and the currently available human stem cells which are less pure and more variable."

Explore further: Cell division speed influences gene architecture

More information: Marks, H., et al. 'The Transcriptional and Epigenomic Foundations of Ground State Pluripotency', Cell, 2012, 149(3), 590-604. doi:10.1016/j.cell.2012.03.026

add to favorites email to friend print save as pdf

Related Stories

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

Cell division speed influences gene architecture

17 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

19 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

20 hours ago

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 0

More news stories