Discovery increases understanding how bacteria spread

Jun 20, 2012

A University of Alberta researcher is moving closer to understanding how infection is caused by the spread of bacteria.

In a study published in the high-impact Cell Press journal called Structure, Joel Weiner and his collaborators, Gerd Prehna and Natalie Stynadka at the University of British Columbia, share new knowledge about how release proteins.

Proteins are complex that perform all sorts of functions in the cells of living things. The group studied a specific protein called YebF in E. coli bacteria. It is widely found in other bacteria as well.

Solving the structure and understanding the mechanism by which this protein spreads bacterial pathogens was a big step forward. As humans develop more resistance to antibiotics, researchers are in search of new ways to stop bacteria from spreading.

"Most induce special structures in order to release proteins that allow them to infect a host," said Weiner of the Department of Biochemistry, whose lab is funded by the Natural Sciences & Engineering Research Council and the Canadian Institutes of Health Research. "What we show here is that normal, run-of-the-mill bacteria can actually release a protein through the pores [of the bacterial membrane] which are normally there to take in small molecules."

YebF proved to be an interesting protein molecule because in addition to its release through the bacterial pore, which is the most recent discovery, it has the unique property of secreting "passenger proteins" that are attached to it. This unique property was a prior discovery patented by the U of A because it has potential use for the production of protein-based drugs by the pharmaceutical and biotechnology industry.

"What we found in the structure is that there are regions that are very flexible in YebF that seem to be very important in getting it out of the bacteria," said Weiner. "If you make mutants in those regions you can prevent the protein from going out.

"We're not investing enough in identifying new targets for ," he said. "What this system does suggests a new target. We're looking at drugs that could block the ability of YebF to go out.

"That's really easy to test for," he added. Because the screen is easy, it's good for pharmaceutical companies."

This step in the research took several years, because solving the structure of this protein wasn't easy. The lab typically uses crystallization but stubborn YebF wouldn't work, so instead they had to use nuclear magnetic resonance.

Typically researchers know what action takes place and they try to find the protein that triggers it. In this case the researchers have been working the opposite direction. They have the , YebF, but they need to find out its purpose in the cell.

Explore further: Scientists find key to te first cell differentiation in mammals

add to favorites email to friend print save as pdf

Related Stories

Virus uses 'Swiss Army knife' protein to cause infection

Aug 17, 2011

In an advance in understanding Mother Nature's copy machines, motors, assembly lines and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into ...

Decoding the molecular machine behind E. coli and cholera

Feb 09, 2012

Scientists from Queen Mary, University of London have discovered the workings behind some of the bacteria that kill hundreds of thousands every year, possibly paving the way for new antibiotics that could treat infections ...

Recommended for you

Research helps identify memory molecules

8 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

9 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

9 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0