Breakthrough gives hope for new imaging isotope source

Jun 11, 2012

A University of Alberta team has made an important breakthrough in the race to find a viable replacement for supply of technetium-99m, an important isotope produced by Canada's Chalk River reactor.

Their research has proven that this important , used in nuclear medicine imaging for about 250,000 Alberta patients each year, can be created in a device known as a —and is as safe to use and provides as reliable an image as reactor-based isotopes. Their results are a promising first step in responding to an impending global need for an alternative supply.

Sandy McEwan, a researcher with the University of Alberta and medical director with Alberta Health Services' Cross Cancer Institute in Edmonton, says that the team has produced viable quantities of high-quality technetium-99m using a 19-mega-electron-volt cyclotron, a circular particle accelerator that propels charged particles using a constant magnetic field. McEwan recently presented results from the first human clinical trials at the annual conference of the Society for Nuclear Medicine in Miami.

McEwan notes that the clinical trials were performed to Good Clinical Practice (GCP) standards, a set of international quality standards set by the International Conference on Harmonization. The GCP standards serve to protect the human rights of subjects in clinical trials, and ensure the safety and efficacy of the newly developed compounds. He says this is the first time that this type of study has ever been performed to GCP.

"We have taken the technetium made on the cyclotron and shown that it behaves exactly the same as the technetium we get from the reactor," he said. "We've shown that the quality of the technetium and the quality of the images is the exactly the same."

This process is a significant step in the search for a viable non-reactor-based solution to replacing the medical isotope stream currently produced by the aging Chalk River facility, where 40 per cent of the world's medical radioisotope supply is generated. The balance of the world's supply of these imaging isotopes comes from aging reactors in South Africa, France, Belgium and the Netherlands, installations that will soon need extensive upgrading or replacement. The U of A researchers believe that this is the first time that technetium has been successfully created in commercially viable quantities using a cyclotron.

"The supply chain is complex, and these complexities contributed to the difficulties associated with the shutdown of Chalk River. We hope that the local supply model of the cyclotron will avoid these problems of the future."

Currently, technetium-99m is used in 85 per cent of all procedures globally every year. In the United States, roughly 20 million imaging procedures are performed each year. The procedure is used to diagnose patients with cancer, cardiac illness, neurological diseases and other diseases. It can be critical in identifying the presence or absence of disease, determining best treatment options and identifying recurrence or progression of the disease.

"Two million scans are performed in every year with technetium-99m. We believe that we now have the potential to continue supplying patients with the tests they need without constructing new nuclear reactors," said McEwan. "This means there is now a potentially valid alternative to reactor-produced medical isotopes."

There is also an important financial aspect to this research. McEwan notes that under the current method, production costs would climb because of costly retrofitting or replacement of the reactors around the world. He also cautions that, although this discovery is an important step in replacing the supply chain of medical imaging isotopes through a non-reactor-based process, further testing is still needed to determine the supply cost of technetium. Further testing is also required to confirm that suitable quantities can be produced via cyclotron to serve the population. However, given the results of the , he is optimistic that the team's research is an important first step.

"I think that if it's an 800-metre race, we've hit the 300-metre point," said McEwan. "We've established a very clear plan. Following that plan, we have achieved the first two or three goals in that process. We're confident that the next two goals will be easy."

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

Related Stories

Cyclotrons could alleviate medical isotope shortage

Jun 07, 2010

The most widely used medical radioisotope, Technetium-99m (Tc-99m), is essential for an estimated 70,000 medical imaging procedures that take place daily around the world. Aging reactors, production intermittencies and threats ...

Canadian Isotope Project enters final stretch

Feb 15, 2012

A research project exploring the potential for making medical isotopes with X-rays from a particle accelerator instead of a nuclear reactor is about to move to the large scale. The Canadian Isotope Project, led by the Canadian ...

New method for manufacturing radio isotopes

Sep 11, 2008

Thanks to a newly-developed technology at the Delft University of Technology in the Netherlands, global shortages of radio isotopes for cancer diagnosis could be a thing of the past. This is the message from Prof. Bert Wolterbeek ...

Team aims to produce medical isotopes without nuclear reactor

Jan 25, 2011

Producing medical isotopes safely, cheaply and reliably without using a nuclear reactor or weapons-grade uranium is the aim of a research project led by the Canadian Light Source (CLS) along with the National Research Council ...

Recommended for you

Scientists film magnetic memory in super slow-motion

6 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.