Researchers discover antitumor molecule that originated within oncogene

June 5, 2012

A common point in all human tumors is that they produce an activation of oncogenes, genes that cause cancer and they also cause a loss of function of the protective genes, called anti-oncogenes or tumour suppressor genes. Normally both categories of anticancer and procancer genes are in different regions of our chromosomes.

A study coordinated by Manel Esteller, Director of the program of epigenetics and at the Bellvitge Institute for Biomedical Research (IDIBELL), Professor of genetics at the University of Barcelona and ICREA researcher, has discovered the existence of an antitumor molecule that originates within an oncogene. The finding is published this week in the Nature Structural & Molecular Biology journal.

The identified anti-oncogene is along non-coding ribonucleic acid (lncRNA), ie a molecule that does not produce protein itself but is responsible for regulating the expression of other proteins. Specifically, the identified molecule is produced in a cancer-causing gene (SMYD3) as its role in healthy cells is to inhibit pro-cancer action of the .

If you enter this fragment of ribonucleic acid on cancer cells growing in laboratory or in human tumors implanted in animals for research is able to block cancer growth. "We believe this discovery will be the starting point to find many other oncogenes and anti-oncogenes that coexist in regions of our genome, that when their life together deteriorates, contribute to the development of human tumors," said Dr. Esteller.

Explore further: Study: How some cancers become leukemia

More information: Intronic RNAs mediate EZH2 regulation of epigenetic targets. Sònia Guil, Marta Soler, Anna Portela, Jordi Carrère, Elena Fonalleras, Antonio Gómez, Alberto Villanueva and Manel Esteller. Nature Structural & Molecular Biology, Early Edition, May 21, 2012.

Related Stories

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.