No-photon laser: Physicists demonstrate 'superradiant' laser design

Apr 04, 2012
JILA's superradiant laser traps 1 million rubidium atoms in a space of about 2 centimeters between two mirrors. The atoms synchronize their internal oscillations to emit laser light. Credit: Burrus/NIST

Physicists at JILA have demonstrated a novel "superradiant" laser design, which has the potential to be 100 to 1,000 times more stable than the best conventional visible lasers. This type of laser could boost the performance of the most advanced atomic clocks and related technologies, such as communications and navigation systems as well as space-based astronomical instruments.

Described in the April 5, 2012, issue of Nature, the prototype relies on a million doing a sort of synchronized line dance to produce a dim beam of deep red laser light. JILA is a joint institute of the National Institute of Standards and Technology and the University of Colorado Boulder (CU).

JILA/NIST physicist James Thompson says the new laser is based on a powerful engineering technique called "phased arrays" in which electromagnetic waves from a large group of identical antennas are carefully synchronized to build a combined wave with special useful features that are not possible otherwise.

"It's like what happens in the but with quantum objects," Thompson explains. "If you line up lots of that each emit an oscillating electric field, you can get all their electric fields to add up to make a really good directional antenna. In the same way, the individual atoms spontaneously form something like a phased array of antennas to give you a very directional ."

This video is not supported by your browser at this time.
Physicists at JILA have demonstrated a novel "superradiant" laser design with the potential to be 100 to 1,000 times more stable than the best conventional visible lasers. This type of laser could boost the performance of the most advanced atomic clocks and related technologies, such as communications and navigation systems as well as space-based astronomical instruments.

An ordinary laser relies on millions of particles of light (photons) ricocheting back and forth between two mirrors, striking atoms in the lasing material and generating copies of themselves to build up intense light. Photons with synchronized leak out of the mirrored cavity to form a laser beam. The laser frequency, or color, wobbles slightly because the mirrors are vibrating due to either the motion of atoms in the mirrors or environmental disturbances—which can be as subtle as people walking past the room or cars driving near the building.

That doesn't happen in the new JILA laser simply because the photons don't hang around long enough. The atoms are constantly energizing and emitting synchronized photons, but on the average, very few—less than one photon, in fact —stick around between the mirrors. This average, which scientists calculate indirectly based on the laser beam's output power, is just enough to maintain an oscillating electric field to sustain the atoms' synchronized behavior. Nearly all photons escape before they have a chance to become scrambled by the mirrors and disrupt the synchronized atoms—thus averting the very effect that causes to wobble in a normal laser.

Thompson engineered a system that first traps the atoms in laser light between two mirrors and then uses other low-power lasers to tune the rate at which the atoms switch back and forth between two energy levels. The atoms emit photons each time their energy level drops. The atoms ordinarily would emit just one photon per second, but their correlated action boosts that rate 10,000-fold—making the light superradiant, Thompson says. This "stimulated emission" meets the definition of a laser (Light Amplification by the Stimulated Emission of Radiation).

"This superradiant laser is really, really dim—about a million times weaker than a laser pointer," Thompson says. "But it is much brighter than one would expect from the ordinary uncoordinated emissions from individual atoms."

Thompson's measurements show that the stability of the laser beam frequency is less than 1/10,000th as sensitive to mirror motion as in a normal optical laser. This result suggests the new approach might be used in the future to improve the best lasers developed at NIST as much as 1,000-fold. Just as important, such lasers might be moved out of the vibration-controlled laboratory environment to be used in real-world applications.

Despite its dim light, the extraordinary stability of the superradiant laser can be transferred by using it as part of a feedback system to "lock" a normal laser's output. The bright laser, potentially 100 to 1,000 times more stable than today's best lasers, could then be used in the most advanced to induce the atomic oscillations that are the pendulum ticks of super-accurate clocks. The added stability allows for a better match to the atoms' exact frequency, significantly boosting the precision of the clock. The improvement would extend to atomic clock-based technologies such as GPS, optical communications, advanced geodetic surveys and astronomy.

Thompson's work confirms predictions made several years ago by JILA/NIST Fellow Jun Ye and JILA/CU theorist Murray Holland, who is also a co-author of the new Nature paper. Thompson stresses that for the new to achieve its highest potential stability and be of practical use, it will need to be re-created using different , such as strontium, which are better suited for use in advanced atomic clocks.

As a nonregulatory agency of the U.S. Department of Commerce, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

Explore further: Precision gas sensor could fit on a chip

More information: J.G. Bohnet, Z. Chen, J.M. Weiner, D. Meiser, M.J. Holland and J.K. Thompson. A steady state superradiant laser with fewer than one intracavity photon. Nature. Apr. 5, 2012.… ull/nature10920.html

Related Stories

'Dark Pulse Laser' produces bursts of... almost nothing

Jun 09, 2010

In an advance that sounds almost Zen, researchers at the National Institute of Standards and Technology and JILA, a joint institute of NIST and the University of Colorado at Boulder, have demonstrated a new ...

First Observation of an “Atomic Air Force”

Aug 19, 2004

The first sighting of atoms flying in formation has been reported by physicists at the Department of Commerce’s National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder (CU-Boulder) in the Aug. ...

Recommended for you

Breakthrough in OLED technology

42 minutes ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

3 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 04, 2012
very precise laser cooling for Bose Einstein condensates
not rated yet Apr 04, 2012
A very quiet baseline to measure background quantum effects?
1 / 5 (2) Apr 04, 2012
NIST, the FCC, DARPA, Library of Congress,Lawrence Livermore, the Smithsonian, etc, just to name the biggies I see all the time, offer fairly good reasons to keep the federal government of the United States around and kicking...NIST will be announcing the winner of the new SHA-x standard; Bruce Schneier's team is in the finals. This article is talking about some excellent tech....the TITLE was a bit misleading, but the content...okay...'' you can be my girl again but no tongue on the first date...
not rated yet Apr 04, 2012
I can think of a few gravity interferometers that could use this.
1 / 5 (1) Apr 05, 2012
Scale up the power and you have a 'phaser'.....phased array laser. Except it would not have a 'stun' mode. Maybe it could have an 'obliterate' mode though.
not rated yet Apr 05, 2012
An even more precise standard for the meter and the second.
not rated yet Apr 06, 2012

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.