Scientists 'hijack' bacterial immune system

Jan 05, 2012

The knowledge that bacteria possess adaptable immune systems that protect them from individual viruses and other foreign invaders is relatively new to science, and researchers across the globe are working to learn how these systems function and to apply that knowledge in industry and medicine.

Now, a team of University of Georgia researchers has discovered how to harness this bacterial to selectively target and silence genes. The finding, published today in the early online edition of the journal Molecular Cell, reveals a powerful new tool that has far-reaching implications for biotechnology and .

"Scientists study bacteria and other to understand essential life processes as well as to improve their use in the safe production of foods, biofuels and pharmaceuticals, and to fight those that cause disease," said Michael , a professor in the departments of biochemistry and molecular biology, and genetics in the UGA Franklin College of Arts and Sciences. "And now we have a new way to engineer bacteria to decrease or even eliminate the expression of the genes of our choosing."

The bacterial immune system consists of two components. The first is an (a molecule that, like DNA, contains ) that acts as a homing signal to target a virus or another cellular invader. The second component is a complex of proteins that cleaves the invader's . In a 2009 paper published in the journal Cell, Terns, co-principal investigator Becky Terns and their colleagues were the first to describe how this pathway, known as the Cmr branch of the CRISPR-Cas immune system, works.

In their latest study, the researchers further their understanding of the system and use that in-depth knowledge to essentially hijack the bacterial immune system to direct its homing system to a target of their choosing. Using customized CRISPR RNAs with a modified homing signal, the scientists were able to destroy the message for a protein that is responsible for resistance to the most commonly prescribed family of antibiotics, the beta-lactam antibiotics (that includes, for example, amoxicillin).

Becky Terns, co-leader of the UGA team, explained, "In this study we identified the key features of the RNAs that the system normally uses, and then showed that using this information we can program the system with engineered 'homing' RNAs to destroy new targets. New targets would go beyond viruses and other invaders to include essentially any gene present in the organism being studied. And because we have defined the components of this system, it is possible that we can introduce it into organisms that do not already possess it to further expand the potential industrial and biomedical applications."

She pointed out that most known CRISPR-Cas systems target and cleave DNA. The system that the UGA team studies is the only known example of a CRISPR-Cas system that targets RNA, the molecule that functions as an intermediary between DNA and the proteins that carry out various functions within cells. "Cleaving its own DNA would kill an organism. Silencing specific RNAs allows more sophisticated applications," Terns said.

Researchers could systematically shut down the function of individual genes, for example, to discern the role they play in essential cellular processes. Gene expression could be modified in bacteria that are used to break down plant materials for biofuels or that produce medications, such as insulin, to improve quality and production.

"This detailed biochemical study of a new branch of the CRISPR-Cas defense system—one that targets RNA molecules—has shed light on a powerful weapon in the bacterial arsenal against invading viruses and mobile elements," said Michael Bender, who oversees RNA processing and function grants at the National Institutes of Health's National Institute of General Medical Sciences. "In addition, by defining the key components of the system, Drs. Terns and their colleagues have set the stage for the development of a new tool for targeting specific RNA molecules in diverse cell types, potentially providing biomedical researchers with a valuable new way to analyze gene functions."

Michael Terns added, "The possibility of exploiting the CRISPR-Cas system in biotechnology has been discussed since its discovery, and this work begins to realize some of that enormous potential."

Explore further: Fighting bacteria—with viruses

Related Stories

Researchers clarify bacterial resistance

Jun 24, 2011

Just like plants and animals, bacteria have a range of defence mechanisms against viruses and other threats. Dutch researchers at the Wageningen Laboratory for Microbiology and their American and Russian colleagues have largely ...

Understanding a bacterial immune system one step at a time

May 17, 2011

Researchers at the University of Alberta have taken an important step in understanding an immune system of bacteria, a finding that could have implications for medical care and both the pharmaceutical and dairy industries.

Researchers unlock the secret of bacteria's immune system

Nov 04, 2010

A team of Université Laval and Danisco researchers has just unlocked the secret of bacteria's immune system. The details of the discovery, which may eventually make it possible to prevent certain bacteria from developing ...

Scientists identify key enzyme in microbial immune system

Sep 09, 2010

Imagine a war in which you are vastly outnumbered by an enemy that is utterly relentless - attacking you is all it does. The intro to another Terminator movie? No, just another day for microbes such as bacteria ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0