Physicists to discuss largest parity violation, other adventures in table-top physics

October 19, 2010

( -- Exploring the fundamental laws of physics has often required huge accelerators and particles colliding at high energies. But table-top experiments, usually employing exquisitely tuned lasers and sensitive detectors, have also achieved the precision necessary for exploring the basic laws of physics at the heart of relativity and quantum mechanics.

Several of these cutting-edge table-top experiments will be discussed at Frontiers in Optics (FiO) 2010/Laser Science XXVI -- the 94th annual meeting of the Optical Society (OSA), which is being held together with the annual meeting of the American Physical Society (APS) Division of Laser Science at the Rochester Riverside Convention Center in Rochester, N.Y., from Oct. 24-28.

Dmitry Budker and his colleagues at the University of California, Berkeley, for example, have used collimated beams of to study parity violation, possible changes in the fine structure constant, and even the question of whether photons are exclusively bosons.

Parity violation, the property by which nature tells left from right, was discovered first in the 1950s by watching the decay of cobalt nuclei. The weak nuclear force, unlike the other known forces of nature, brings about reactions that would look different when observed in a mirror. Years later, parity violation was observed in atoms. Now, Budker uses atoms of the rare Earth element ytterbium to observe the largest extent of ever seen in atoms, larger by a factor of 100 compared to previous tests. His goal is to improve the precision of this measurement so that researchers could begin to use the parity-violating process to help measure the distribution of in nuclei.

In another setup, Budker and his colleagues use atoms of the rare Earth element dysprosium to see whether the fine structure constant (denoted by alpha) is changing over time. The fine structure constant is a measure of the intrinsic strength of the . Some observations of distant galaxies have provided credible evidence that the fine structure "constant" may not really be constant. In Budker’s terrestrial experiment, dysprosium atoms are used since they have several very closely spaced atomic energy levels. By shining several laser beams at the atoms and applying radio waves, they measure the rate at which the atoms absorb energy, exploiting the fact that the absorption has a dependence on the size of alpha. “The new measurement shows that alpha is not changing by more than one part in 1015 per year,” says Budker. “Our eventual goal is a part in 1018, and we are making rapid progress.”

The third tabletop experiment recently performed by Budker and his colleagues concerns photons, which are considered bosons--particles that possess an integral value of spin (0, 1, 2, etc.). The other type of basic particle is a fermion-- a particle such as an electron or quark that possesses a half-integral amount of spin (1/2, 3/2, etc.). A conspicuous property of fermions is that two of them can never occupy the same quantum state if they possess identical quantum states (such as energy, position, or spin). This property, known as the Pauli exclusion principle, accounts for a lot of chemistry since it dictates how electrons inside atoms are distributed in their quantum orbitals.

If photons (which are supposed to be bosons and free from the Pauli exclusion principle) were to have even a small fermionic component, then situations would arise in which some selection rules for atomic transitions would no longer be strict. Budker and his colleagues exposed atoms to two coordinated beams, the goal being to have the atoms absorb two identical photons simultaneously, promoting an electron in the atoms from energy state to a higher state in such “forbidden” transition. No absorption was observed which signified there was no deviation from normal statistics. The new limitation on a possible fermion component of photons is now established to be less than 4 parts per 1011.

Explore further: Particle physics study finds new data for extra Z-bosons and potential fifth force of nature

More information: The talk, "Results of Table-Top Fundamental Physics Experiments at Berkeley" is at 2 p.m. on Thursday, Oct. 28.

Related Stories

How does the proton get its spin?

February 17, 2010

( -- At a meeting this week of the American Physical Society in Washington, MIT Associate Professor of Physics Bernd Surrow reported on new results from the STAR experiment at the Relativistic Heavy Ion Collider ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.