'Voltage Patterning' could be next step in nanostructure lithography

Mar 02, 2009 By Miranda Marquit feature

(PhysOrg.com) -- "What you want these days is to have precise control of nanostructures. Using masks and optical techniques, it is possible to control how nanostructures grow for use in practical applications," David Field tells PhysOrg.com. "This is already done in silicon devices. However, with softer materials it is a bit more difficult. Our work could make it possible for a new method of patterning that would work with a number of materials."

Field, a scientist at the University of Aarhus in Aarhus, Denmark, calls the new possibility ‘voltage patterning’. Along with his peers at Aarhus, Balog, Cicman and Jones, Field believes that the results of a recent experiment showing spontaneous dipole alignment in N2O in multilayers on a substrate of gold, could lead to a number of nanotechnology applications (they even have a patent application in for the principle behind voltage patterning). Their work appears in Physical Review Letters: “Spontaneous Dipole Alignment in Films of N2O.”

“What we’ve done,” Field explains, “is fire electrons at solids to see what happens. We’re using very low energies - which no one else has done with layers of N2O.” What they found when they sent electrons, generated using the Aarhus synchrotron, ASTRID, careening into films of N2O over gold, surprised them. “We got a current even when the voltages told us we shouldn’t. This showed that the N2O spontaneously acquired a positive charge. We think this must be due to dipole alignment.”

“Most scientists are using one thousand times the currents we were using, and that is why this wasn’t seen before,” Field says. “Such large currents would destroy the effect which we have seen in seconds or less. The very low currents we use - femtoamps - interfere negligibly with the dipole alignment.”

Varying different aspects of the set-up, like thickness and deposition temperature, created very distinct effects in the way the system behaves. “We discovered that you have to have a certain thickness for the charge to appear,” Field explains. “Once we reached a certain thickness, the voltage began increasing with the film thickness. We also found that when we increased the temperature, the voltage appeared for thinner films. However at lower temperature, once you had a thick enough film, then the voltage started to rise faster than at higher temperatures. You could get up to five volts!”

“Though this behavior is a bit complicated, the system is really well-behaved and reproducible to the millivolt level,” Field adds. “We are sure that we are seeing a real effect and not an artefact.”

Even though the Aarhus team hasn’t gone beyond this initial discovery stage, the potential applications are causing some excitement. “With current lithography techniques,” Field explains, “you have to create the patterns you want for nanostructures bit by bit. The potential for voltage patterning is that you could put down a pattern of N2O with a mask, remove the mask and then other molecules you introduce would be attracted to the where the N2O lies and be patterned accordingly. It could be very efficient.” He is quick to reiterate that this process hasn’t been tested yet, but it does have future potential to create patterns for a wide range of molecules, especially biomolecules.

Applications that could grow from this discovery include biosensor applications, lab on a chip applications and nanoxerography. “We need to get together with those in the industry who are ready to more fully develop techniques to implement the principle we have demonstrated.”

More information: Balog, Cicman, Jones and Field, “Spontaneous Dipole Alignment in Films of N2O.” Physical Review Letters (2009). Available online: link.aps.org/doi/10.1103/PhysRevLett.102.073003 .

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Nanospiked bacteria are the brightest hard X-ray emitters

Related Stories

Seafaring spiders depend on their 'sails' and 'anchors'

16 minutes ago

Spiders travel across water like ships, using their legs as sails and their silk as an anchor, according to research published in the open access journal BMC Evolutionary Biology. The study helps explain how sp ...

Stopping Candida in its tracks

18 minutes ago

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

Will climate change put mussels off the menu?

19 minutes ago

Climate change models predict that sea temperatures will rise significantly, including in the tropics. In these areas, rainfall is also predicted to increase, reducing the salt concentration of the surface ...

Recommended for you

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

Soundproofing with quantum physics

Jul 02, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon ...

Extreme lab at European X-ray laser XFEL is a go

Jul 02, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

guiding_light
5 / 5 (1) Mar 03, 2009
It's a neat effect, but with the low currents and temperatures required, it looks like one has to be very patient with this technique. This is essentially charging of N2O by low energy electrons.
BrianH
1 / 5 (1) Mar 04, 2009
?? What low temperatures? It might be 300K for all you know.
guiding_light
not rated yet Mar 05, 2009
The paper gives doubledigit Kelvin results.
ZeroDelta
not rated yet Mar 05, 2009
At least I finnaly have heard something to use with regards to large scale graphene production (ish). There is work to do when I transfer to a real college!!!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.