Fluorescent glass SRMs are new tool for spectroscopy

June 9, 2007

Researchers at the National Institute of Standards and Technology have developed two new calibration tools to help correct and validate the performance of analytic instruments that identify substances based on fluorescence.

Recent years have seen a significant increase in the development and use of fluorescence-based analytic techniques. Researchers can detect, measure and identify unknown substances—potentially including chemical and biological weapons—using spectroscopic techniques. In fluorescence spectroscopy, scientists send a beam of light at a certain wavelength into a sample, exciting electrons in particular analytes or fluorescent labels, which then emit light at longer wavelengths with measurable energy levels.

This resulting spectral signature, recorded by a fluorescence spectrometer, is distinct for different fluorescent compounds. Many of these assays are being used in areas—including clinical diagnostics, environmental monitoring and drug development—where regulatory requirements are strict and may require standards for instrument qualification and method validation.

To meet these needs, NIST has developed two ready-to-use, fluorescent glass Standard Reference Materials (SRMs), about the size of a pack of a gum, whose certified values can be used to correct fluorescence emission spectra for relative intensity. SRM 2940 (“Orange emission”) has certified values for emission wavelengths from 500 to 800 nanometers when excited with light at 412 nm; SRM 2941 (“Green emission”) has certified values for emission wavelengths from 450 to 650 nm when excited with light at 427 nm.

To use SRM 2941 to calibrate a fluorescence spectrometer, for instance, investigators would excite the glass with light at 427 nm and collect the resulting fluorescence emission from 450 nm to 650 nm. Spectral correction factors for the instrument then could be determined by comparing the measured intensity values to the certified values. The fluorescence spectrum of any unknown sample taken on that instrument that emits from 450 nm to 650 nm then could be corrected to yield its true spectral shape.

These standards also are resistant to photodegradation, making them good performance validation standards. Researchers can use them on a day-to-day basis to validate performance by simply measuring their fluorescence intensity under the same conditions, even for fluorescence instruments with non-tunable wavelength selectors, such as filter-based fluorometers and microscopes.

Standard Reference Materials are among the most widely distributed and used products from NIST. The agency prepares, analyzes and distributes more than 1300 different materials that are used throughout the world to check the accuracy of instruments and test procedures.

Source: National Institute of Standards and Technology

Explore further: New diamond structures produce bright luminescence for quantum crypotography

Related Stories

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

OLED experts to advance improved production techniques

October 8, 2014

Back in May, Steven Shankland in CNET said that, for the lighting business, "the next technology is coming: OLED (organic light-emitting diode) lighting. It replaces the small, bright dots of LEDs with sheets of light that ...

Research simplifies recycling of rare-earth magnets

June 18, 2015

Despite their ubiquity in consumer electronics, rare-earth metals are, as their name suggests, hard to come by. Mining and purifying them is an expensive, labor-intensive and ecologically devastating process.

Recommended for you

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.