This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source


Researchers develop new method to enhance sodium ion storage

Researchers develop new method to enhance sodium ion storage
Graphical abstract. Credit: Angewandte Chemie International Edition (2023). DOI: 10.1002/anie.202218282

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) due to the abundant sodium resources, suitable redox potential, and similar charge store mechanism.

However, the larger diameter of Na ions compared to Li ions makes the sodiation/desodiation process more difficult with a larger volumetric variation of the electrode material, thus leading to poor capacity and cycling stability. Therefore, a rational design of electrode materials is critical for improving the electrochemical performance of SIBs.

A research group led by Prof. Deng Dehui from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in with Prof. Zhang Jianan from Zhengzhou University, reported a synergetic effect in the atomic-interface of well-constructed 2H-MoS2/Fe(SA)-N-C anode assembled with 2H-MoS2 layer and N-doped carbon-confined Fe atom, which boosts the reversible sodium storage capacity.

This study was published in Angewandte Chemie International Edition on Feb. 2.

The researchers found that driven by the work function difference at the heterointerface, the electron could transfer from Fe(SA)-N-C to 2H-MoS2 easily, enhancing the adsorption Na+ ion at the S sites of electron-rich MoS2.

Meanwhile, they also indicated that the change in spin-state of the Fe site of Fe(SA)-N-C optimized the and catalytic activity of the Fe site.

Compared with nitrogen-doped carbon (N-C) and pure carbon, the Fe sites of Fe(SA)-N-C could effectively promote the phase transition and structural evolution of 1T/2H-MoS2 during the sodiation/desodiation process, thus prolonging the lifetime of the material. The 2H-MoS2/Fe(SA)-N-C anode showed a robust long-term cycling performance with a capacity of 350 mA h g-1 after 2,000 cycles at 2.0 A g-1.

More information: Huicong Xia et al, Evolution of Stabilized 1T‐MoS2 by Atomic‐Interface Engineering of 2H‐MoS 2 /Fe−N x towards Enhanced Sodium Ion Storage, Angewandte Chemie International Edition (2023). DOI: 10.1002/anie.202218282

Citation: Researchers develop new method to enhance sodium ion storage (2023, March 9) retrieved 9 June 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Particle refinement induces and increases cycle capacity of sodium/lithium-ion batteries


Feedback to editors