This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Solved: The secret to long-lived leaves

Solved: the secret to long lived leaves
Credit: Macquarie University

Monkey puzzle tree leaves can live for over two decades. And Picea growing in the Gongga Mountains in China can thrive for thousands of years, growing slowly in severe environments with leaves that last twenty years on average.

On the other hand, maple leaves last a season, while blueberry leaves may last just three months. So, what determines the lifespan of a tree ?

The answer to that superficially simple question is reported today in a paper in Science Advances by an international team of researchers from China, the U.K., Japan, Norway, the U.S., and Australia.

"It's all about the economic choices faced by plants," says first author, Dr. Han Wang from Tsinghua University in Beijing.

"We already knew that conifers and other evergreen trees make longer-living leaves the closer they are to the poles," she says. "Deciduous trees do the opposite. Their longest lasting leaves are found at the tropics."

"And we knew that long-lived leaves tend to be tougher and thicker, and more expensive to build."

"Now, we have identified the major environmental factors at play, and summarized them in two equations," she says. "These leaf economic traits are fundamental to the and nutrient economy."

The team tested their equations using data from thousands of species from hundreds of ecosystems, drawn from the China Plant Trait Database and the Global Plant Trait Network.

"Each species is essentially taking a punt on the best way to maximize carbon absorption," says co-author Professor Ian Wright from Macquarie University and Western Sydney University.

"Evergreen conifers growing in poor soil in areas with a long cold winter can only thrive if they make long term investments in their leaves. Whereas , like the maple, race to create new leaves and capture carbon in the summer sun before leaf-drop in autumn," he says. "The economically rational decision for a maple tree is to invest in fast growing, cheap but flimsy leaves."

Plants have been subject to profound changes in climate during their evolution. Glaciation and other large, and sometimes rapid, changes in recent geological times have resulted in major changes in vegetation. The on climate and direct impact on vegetation are adding to the forces shaping , in ways that remain only partly understood.

The researchers propose that this research will not only explain what grows where today, but it will also move ecology into a predictive science that will:

  • enable better, more accurate global and regional climate models
  • allow land managers to better model forests and other vegetation, and predict how climate change will affect ecosystems
  • allow better estimation on crop yield and the impact of climate change on agriculture.

The global team also includes researchers from Imperial College London, UNSW Sydney, Cornell University, Ishikawa Prefectural University, and the University of Oslo. Full list below.

The paper builds on twenty years of research led by Professor Mark Westoby and Professor Ian Wright at Macquarie University.

Their 2004 paper in Nature, "The World-wide leaf economics spectrum" has been cited more than 7,500 times and has been followed by papers on leaf photosynthetic capacity, leaf respiration costs, leaf nitrogen concentration, leaf size, and now, leaf lifespan.

"This body of work has transformed ecology," says Professor Nathan Hart, Head of Macquarie University's School of Natural Sciences. "It's also key to ongoing work by Macquarie researchers on the impact of plant invasions, resilience of horticultural species to , and the form and function of plant species on the thousands of islands that surround the Australian mainland."

More information: Han Wang et al, Leaf economics fundamentals explained by optimality principles, Science Advances (2023). DOI: 10.1126/sciadv.add5667

Journal information: Science Advances , Nature

Citation: Solved: The secret to long-lived leaves (2023, January 19) retrieved 26 April 2024 from https://phys.org/news/2023-01-secret-long-lived.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

In the tropics, nitrogen-fixing trees take a hit from herbivores

11 shares

Feedback to editors