Powering H. pylori pathogenesis

h pylori
Credit: CC0 Public Domain

The bacterium Helicobacter pylori colonizes the stomach in half of the world's population and increases the risk of gastric cancer.

Strains of H. pylori that contain a cluster of genes called the "cag PAI" are associated with higher risk. These strains synthesize a complex known as a type IV secretion system (T4SS), which injects the oncoprotein CagA and other bacterial products into stomach cells.

Aung Soe Lin, Timothy Cover, MD, and colleagues have explored the roles of energy-generating ATPase proteins that are part of the T4SS.

They report in the February issue of Infection and Immunity that three ATPases (Cag-alpha, Cag-beta, and CagE) are each required for CagA translocation into host cells. In contrast, only two of the ATPases are required for the injection of other bacterial products that stimulate inflammatory signaling.

The findings provide new insights into the sources of energy used by this complex molecular machine linked to the pathogenesis of gastric cancer.

Explore further

Probing H. pylori cancer protein

More information: Aung Soe Lin et al. Bacterial Energetic Requirements for Helicobacter pylori Cag Type IV Secretion System-Dependent Alterations in Gastric Epithelial Cells, Infection and Immunity (2019). DOI: 10.1128/IAI.00790-19
Journal information: Infection and Immunity

Citation: Powering H. pylori pathogenesis (2020, February 10) retrieved 8 December 2021 from https://phys.org/news/2020-02-powering-pylori-pathogenesis.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors