A new path to understanding second sound in Bose-Einstein condensates

A new path to understanding second sound in Bose-Einstein condensates
There are two sound velocities in a Bose-Einstein condensate. In addition to the normal sound propagation there is second sound, which is a quantum phenomenon. Scientists around Ludwig Mathey from the University of Hamburg have put forth a new theory for this phenomenon. Credit: UHH, Mathey group

There are two sound velocities in a Bose-Einstein condensate. In addition to the normal sound propagation there is second sound, which is a quantum phenomenon. Scientists in Ludwig Mathey's group from the University of Hamburg have put forth a new theory for this phenomenon.

When you jump into a lake and hold your head under water, everything sounds different. Apart from the different physiological response of our ears in air and water, this derives from the different sound propagation in water compared to air. Sound travels faster in water, checking in at 1493 m/s, on a comfortable summer day of 25°C. Other liquids have their own sound velocity, like alcohol with 1144 m/s, and helium, if you go to a chilling -269°C for its liquefied state, with 180 m/s.

These liquids are referred to as classical liquids, examples for one of the primary states of matter. But if we cool down that helium a few degrees more, something dramatic happens, it turns into a quantum liquid. This macroscopic display of quantum mechanics is a , a liquid that flows without friction.

So what do you hear if you make the unfortunate decision to stick your head into this liquid? Surprisingly, you will hear the same sound twice. In addition to the normal sound of a liquid there is the phenomenon of that derives from the quantum nature of this liquid. If someone says something to you while immersed in , you will hear it as first sound first, and then get a second chance to listen when it arrives as , albeit strongly muted. For , second sound is quite a bit slower than first sound, with 25 m/s vs. 250 m/s, between 1 and 2 Kelvin.

While the conventional theory of second sound has been successful for superfluid , the rise of Bose-Einstein condensates of ultracold atoms has posed new challenges. A team of scientists led by Ludwig Mathey from the University of Hamburg have put forth a new theory that captures second sound in these quantum liquids, recently published in Physical Review A.

"For , second is slower than first ," explains co-author Vijay Singh, "but we were amazed to find that this is not necessarily true, that the second pulse can be faster." A new theoretical approach was needed to capture this. Modern problems require modern solutions, as they say.

"We generalized the Feynman path integral to expand the theory of superfluids," describes lead author Ilias Seifie the conceptual advance. While the path integral, brilliantly conceived by Richard Feynman, formulates quantum mechanics as a sum over trajectories, these trajectories themselves are classical. "We modified what these trajectories look like' continues Seifie, "in our path integral they contain information about quantum fluctuations." Imagine a pool noodle that stretches from A to B as a poor man's visualization of a trajectory that enters the Feynman path integral. The cross-section of the noodle is more or less round with a constant diameter along its length. But in the new path integral, the shape of the cross section can vary, it can take elliptical shapes, imagine squeezing the pool noodle together. Fittingly, physicists refer to these mechanical states as squeezed states.

"This approach is widely applicable," explains Ludwig Mathey, "it can be applied to any method that is based on path integrals." Indeed, many phenomena at the interface of and classical physics can be imagined to be better understood with this approach. One might just squeeze a bit more insight out of nature with this new framework.


Explore further

Unusual sound waves discovered in quantum liquids

More information: Ilias M. H. Seifie et al, Squeezed-field path-integral description of second sound in Bose-Einstein condensates, Physical Review A (2019). DOI: 10.1103/PhysRevA.100.013602
Journal information: Physical Review A

Citation: A new path to understanding second sound in Bose-Einstein condensates (2019, July 2) retrieved 21 October 2019 from https://phys.org/news/2019-07-path-bose-einstein-condensates.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more