Related topics: stars · hydrogen

Creating vortices in a superfluid made of light

By using a special combination of laser beams as a very fast stirrer, RIKEN physicists have created multiple vortices in a quantum photonic system and tracked their evolution. This system could be used to explore exotic new ...

Atom-by-atom solvation recorded for the first time

A team of chemists and physicists at Aarhus University, in Denmark, working with a colleague from Universitat de Barcelona, in Spain, has recorded atom-by-atom solvation for the first time. In their study, published in the ...

What a '2D' quantum superfluid feels like to the touch

Researchers from Lancaster University in the UK have discovered how superfluid helium 3He would feel if you could put your hand into it. Dr. Samuli Autti is the lead author of the research published in Nature Communications.

Did this supernova explode twice?

All supernovae are exploding stars. But the nature of a supernova explosion varies quite a bit. One type, named Type 1a supernovae, involves a binary star where one of the pair is a white dwarf. And while supernovae of all ...

Dynamics of molecular rotors in bulk superfluid helium

Molecules immersed in liquid helium can probe superfluidity since their electronic, vibrational and rotational dynamics can provide valuable cues about the superfluid at the nanoscale. In a new report in Science Advances, ...

page 1 from 40


Helium (pronounced /ˈhiːliəm/) is the chemical element with atomic number 2, and is represented by the symbol He. It is a colorless, odorless, tasteless, non-toxic, inert monatomic gas that heads the noble gas group in the periodic table. Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions.

An unknown yellow spectral line signature in sunlight was first observed from a solar eclipse in 1868 by French astronomer Pierre Janssen. Janssen is jointly credited with the discovery of the element with Norman Lockyer, who observed the same eclipse and was the first to propose that the line was due to a new element which he named helium. In 1903, large reserves of helium were found in the natural gas fields of the United States, which is by far the largest supplier of the gas. Helium is used in cryogenics, in deep-sea breathing systems, to cool superconducting magnets, in helium dating, for inflating balloons, for providing lift in airships and as a protective gas for many industrial uses (such as arc welding and growing silicon wafers). Inhaling a small volume of the gas temporarily changes the timbre and quality of the human voice. The behavior of liquid helium-4's two fluid phases, helium I and helium II, is important to researchers studying quantum mechanics (in particular the phenomenon of superfluidity) and to those looking at the effects that temperatures near absolute zero have on matter (such as superconductivity).

Helium is the second lightest element and is the second most abundant in the observable universe, being present in in the universe in masses more than 12 times those of all the other elements heavier than helium combined. Helium's abundance is also similar to this in our own Sun and Jupiter. This high abundance is due to the very high binding energy (per nucleon) of helium-4 with respect to the next three elements after helium (lithium, beryllium, and boron). This helium-4 binding energy also accounts for its commonality as a product in both nuclear fusion and radioactive decay. Most helium in the universe is helium-4, and was formed during the Big Bang. Some new helium is being created presently as a result of the nuclear fusion of hydrogen, in all but the very heaviest stars, which fuse helium into heavier elements at the extreme ends of their lives.

On Earth, the lightness of helium has caused its evaporation from the gas and dust cloud from which the planet condensed, and it is thus relatively rare. What helium is present today has been mostly created by the natural radioactive decay of heavy radioactive elements (thorium and uranium), as the alpha particles that are emitted by such decays consist of helium-4 nuclei. This radiogenic helium is trapped with natural gas in concentrations up to seven percent by volume, from which it is extracted commercially by a low-temperature separation process called fractional distillation.

This text uses material from Wikipedia, licensed under CC BY-SA