New dispersion method to effectively kill biofilm bacteria could improve wound care

Staphylococcus aureus
Credit: CC0 Public Domain

Researchers at Binghamton University, State University of New York have developed a method to treat bacterial infections which could result in better wound care.

Biofilms are a structured community of bacterial cells that are adherent to inert or living surfaces. What makes these structures special is that living within these biofilm communities makes its resident bacteria resistant to . A research team led by Karin Sauer, professor of biological sciences at Binghamton University, demonstrated that two important human pathogens, P. aeruginosa and S. aureus, need pyruvate to form these structured biofilm communities that are inherently resistant to antibiotics. In turn, the research team demonstrated that removal of pyruvate induces a physiological change in biofilm bacteria that has two consequences: 1) it causes them to disassemble the biofilm structure in a process referred to as biofilm dispersion; and 2) it renders biofilm bacteria more susceptible to antibiotics. 

"Our in vitro laboratory findings translated to animals and chronic wound infections, as exposing infected burn wounds to pyruvate depleting conditions not only reduced the bacterial burden present in these wounds, but also enabled the effective killing of biofilm cells by the antibiotic tobramycin," Sauer said.

Biofilm infections are almost impossible to treat by conventional antibiotic . In that regard, these findings are noteworthy, Sauer said. Inducing biofilm dispersion by depleting pyruvate is an add-on therapy that maximizes the effectiveness of conventional antibiotics in killing biofilms. That this novel therapeutic strategy works was apparent as the combination treatment (inducing biofilm dispersion in addition to conventional antibiotic therapy) was significantly more effective than treatment with antibiotics alone or even with the antimicrobial cream silver sulfadiazine, which is considered the gold standard in wound care.

"What this means for wound care is that pyruvate depletion can improve the anti-biofilm activity of conventional antibiotic therapy (which by itself is not working so well), to better treat infected and, ultimately, improve wound healing," Sauer said. "Given that pyruvate depletion not only disperses already established biofilms, but also prevents the formation of antibiotic-resistant biofilms by the two principal pathogens associated with wound infections, pyruvate depletion can also be used to prevent biofilm-related wound infections."

Sauer said that her lab and collaborator Amber Doiron, assistant professor of biomedical engineering at the University of Vermont, are planning on developing therapies based on -depleting conditions.

The paper, "Pyruvate-depleting conditions induce dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo," was published in Nature's Scientific Reports.


Explore further

Cinnamon oil could be key in preventing superbugs

More information: James Goodwine et al, Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo, Scientific Reports (2019). DOI: 10.1038/s41598-019-40378-z
Journal information: Scientific Reports

Citation: New dispersion method to effectively kill biofilm bacteria could improve wound care (2019, April 23) retrieved 15 October 2019 from https://phys.org/news/2019-04-dispersion-method-effectively-biofilm-bacteria.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
10 shares

Feedback to editors

User comments

Apr 23, 2019
The paper is at this link:

https://www.natur...-40378-z

The paper must be one of the most exhaustively considered and composed papers I have read in medicine for years. The level of clear and detailed information covering the various permutations of conditions/reagents etc provided by Karin Sauer and her team makes experiments by other researchers much more likely/easier in the interests of scientific reproducibility...which is critical for eventual confirmation of this team's methodology/results/conclusions. If this is as it seems, then medicine is about to get one of the greatest boosts since the discovery that stubborn Helicobacter Pylori infection was one of the main causes of stomach ulcers curable by combined antibiotic treatment. Kudos.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more