Researchers discover a novel protein degradation pathway

March 12, 2019, Florida State University
FSU doctoral student Bailey Koch works in the lab of Associate Professor Hong-Guo Yu. Credit: Bill Lax/FSU

The nucleus is a treasure trove of biological information that keeps the cell—and thus living organisms—ticking. But many processes within the nucleus remain a mystery to scientists.

A Florida State University research team has uncovered one such mystery—how a type of that is embedded in the inner nuclear membrane clears out of the system once it has served its purpose. Understanding that process may have implications for a class of human diseases including muscular dystrophy.

FSU graduate student Bailey Koch, working in the lab of Associate Professor of Biological Science Hong-Guo Yu, led the work.

"This research is like a puzzle," said Koch, who also worked for Yu as an undergraduate. "This study is a small piece, but it's a piece that we and others can build on going forward."

Koch and Yu examined the build-up of proteins around the nuclear membrane. These proteins are vital to a number of biological functions, but researchers were searching for clues about how old proteins were cleared out once they ceased to function.

The answer is published in the Journal of Cell Biology. Koch and Yu found that a type of enzyme that typically regulates cell cycle progression is responsible for the breakdown of the protein Mps3, an integral inner nuclear membrane protein that is an essential component linking the nucleoskeleton to the cytoskeleton.

Koch, who presented the research at the American Society of Cell Biology/European Molecular Biology Organization 2018 meeting, compares the cell to a park with the nucleus being the swimming pool and people serving as the proteins. When too many people crowd around the pool, it is difficult for parents to see their children, she said, so there needs to be a way to clear the non-parents from the side of the pool.

The enzyme is the lifeguard that clears proteins away.

Yu and Koch's work is the first to shed light on this protein turnover pathway. They ran their experiments in yeast, a good model organism that often mimics human cellular processes, and conducted sophisticated genetic and biochemical analyses of their samples.

The protein the researchers studied is essential to cellular processes, such as cell-cycle progression, and also plays a role in a class of diseases that includes and a premature aging syndrome called progeria. Obtaining a better understand of how the protein is regulated could open doors to further understanding of how these diseases work.

"Many diseases associated with the nuclear membrane are due to protein issues," Yu said. "That's why there is so much of a focus on how they work."

Explore further: Super-resolution microscopy reveals lamin protein meshwork at the inner side of the nuclear membrane

More information: Bailey A. Koch et al, The anaphase-promoting complex regulates the degradation of the inner nuclear membrane protein Mps3, The Journal of Cell Biology (2019). DOI: 10.1083/jcb.201808024

Related Stories

Organizing a cell's genetic material from the sidelines

June 28, 2018

A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how certain regions of this highly packaged DNA can be ...

Spectrin proteins spring into action to restore nucleus

June 20, 2017

When you lift weights, carry heavy boxes, or engage in physical activity, the cells in your body stretch and deform to accommodate your movements. But how do your cells recover, or return to their original state, once you ...

A game of pool in the live cell

September 20, 2018

Cells need to react to environmental changes and maintain a balanced system of signaling cascades within the cell. Proteins outside of the cell, on the cellular surface, inside the cellular membrane, and within the cell orchestrate ...

Recommended for you

Study reveals properties of a Type Ib supernova in NGC 4080

March 25, 2019

A recent study conducted by astronomers has revealed important observational properties of a Type Ib supernova designated MASTER OT J120451.50+265946.6, which exploded in the galaxy NGC 4080. The research, presented in a ...

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.