Physicists get thousands of semiconductor nuclei to do 'quantum dances' in unison

February 21, 2019, University of Cambridge
From left to right: Mete Atatüre, Dorian Gangloff, Emil Denning, Claire Le Gall, Daniel Jackson, Jonny Bodey. Credit: Mete Atatüre

A team of Cambridge researchers have found a way to control the sea of nuclei in semiconductor quantum dots so they can operate as a quantum memory device.

Quantum dots are crystals made up of thousands of atoms, and each of these atoms interacts magnetically with the trapped electron. If left alone to its own devices, this interaction of the electron with the nuclear spins, limits the usefulness of the electron as a bit—a qubit.

Led by Professor Mete Atatüre, a Fellow at St John's College, University of Cambridge, the research group, located at the Cavendish Laboratory, exploit the laws of quantum physics and optics to investigate computing, sensing or communication applications.

Atatüre said: "Quantum dots offer an ideal interface, as mediated by light, to a system where the dynamics of individual interacting spins could be controlled and exploited. Because the nuclei randomly 'steal' information from the electron they have traditionally been an annoyance, but we have shown we can harness them as a resource."

The Cambridge team found a way to exploit the interaction between the electron and the thousands of nuclei using lasers to 'cool' the nuclei to less than 1 milliKelvin, or a thousandth of a degree above the absolute zero temperature. They then showed they can control and manipulate the thousands of nuclei as if they form a single body in unison, like a second qubit. This proves the nuclei in the quantum dot can exchange information with the electron qubit and can be used to store quantum information as a device. The findings have been published in Science today.

Quantum computing aims to harness fundamental concepts of quantum physics, such as entanglement and superposition principle, to outperform current approaches to computing and could revolutionise technology, business and research. Just like classical computers, quantum computers need a processor, memory, and a bus to transport the information backwards and forwards. The processor is a qubit which can be an electron trapped in a quantum dot, the bus is a single photon that these generate and are ideal for exchanging information. But the missing link for quantum dots is quantum memory.

Atatüre said: "Instead of talking to individual nuclear spins, we worked on accessing collective spin waves by lasers. This is like a stadium where you don't need to worry about who raises their hands in the Mexican wave going round, as long as there is one collective wave because they all dance in unison.

"We then went on to show that these spin waves have quantum coherence. This was the missing piece of the jigsaw and we now have everything needed to build a dedicated quantum memory for every qubit."

In quantum technologies, the photon, the qubit and the memory need to interact with each other in a controlled way. This is mostly realised by interfacing different physical systems to form a single hybrid unit which can be inefficient. The researchers have been able to show that in quantum dots, the memory element is automatically there with every single qubit.

Dr. Dorian Gangloff, one of the first authors of the paper and a Fellow at St John's, said the discovery will renew interest in these types of . Dr. Gangloff explained: "This is a Holy Grail breakthrough for quantum dot research—both for quantum memory and fundamental research; we now have the tools to study dynamics of complex systems in the spirit of quantum simulation."

The long term opportunities of this work could be seen in the field of quantum computing. Last month, IBM launched the world's first commercial quantum computer, and the Chief Executive of Microsoft has said has the potential to 'radically reshape the world'.

Gangloff said: "The impact of the could be half a century away but the power of disruptive technology is that it is hard to conceive of the problems we might open up—you can try to think of it as known unknowns but at some point you get into new territory. We don't yet know the kind of problems it will help to solve which is very exciting."

Explore further: Using one quantum dot to sense changes in another

More information: "Quantum interface of an electron and a nuclear ensemble" Science (2019). science.sciencemag.org/cgi/doi … 1126/science.aaw2906

Related Stories

Using one quantum dot to sense changes in another

September 20, 2018

Quantum dots are nanometer-sized boxes that have attracted much scientific interest for use in nanotechnology because their properties obey quantum mechanics and are requisites to developing advanced electronic and photonic ...

Quantifying how much quantum information can be eavesdropped

January 28, 2019

Summary The most basic type of quantum information processing is quantum entanglement. In a new study published in EPJ B, Zhaonan Zhang from Shaanxi Normal University, Xi'an, China, and colleagues have provided a much finer ...

Hybrid qubits solve key hurdle to quantum computing

December 28, 2018

Spin-based quantum computers have the potential to tackle difficult mathematical problems that cannot be solved using ordinary computers, but many problems remain in making these machines scalable. Now, an international group ...

A spin trio for strong coupling

July 26, 2018

To make qubits for quantum computers less susceptible to noise, the spin of an electron or some other particle is preferentially used. Researchers at ETH Zurich have now developed a method that makes it possible to couple ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Andrew Laughlin
not rated yet Feb 21, 2019
Am Andrew Laughlin,i want to say to the whole wide world on how my wife was cured from thyroid cancer with the use of Cannabis oil from Phoenix Tears, Am so happy right now, my wife is physically fitted, and right now she is free from cancer,I just give God the glory for this day in my family life, Dear brother's and sister's if you know that you have anyone who is suffering form this cancerous disease, you can also share this great testimony that just happened to me to them, so that they can see with themselves the power of cannabis oil, how it kill and destroy cancer,you can as well get in contact with them via Email:phoenixtearsmedicalcentre@gmail.com}

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.