Using one quantum dot to sense changes in another

September 20, 2018, Osaka University
Scanning electron micrograph of InAs self-assembled quantum dot transistor device. Credit: Osaka University

Quantum dots are nanometer-sized boxes that have attracted much scientific interest for use in nanotechnology because their properties obey quantum mechanics and are requisites to developing advanced electronic and photonic devices. Quantum dots that self-assemble during their formation are particularly attractive as tunable light emitters in nanoelectronic devices and for studying quantum physics because of their quantized transport behavior. It is important to develop a way to measure the charge in a single self-assembled quantum dot to achieve quantum information processing; however, this is difficult because the metal electrodes needed for the measurement can screen out the very small charge of the quantum dot. Researchers at Osaka University have recently developed the first device based on two self-assembled quantum dots that can measure the single-electron charge of one quantum dot using a second as a sensor.

The device was fabricated using two indium arsenide (InAs) connected to electrodes that were deliberately narrowed to minimize the undesirable screening effect.

"The two dots in the device showed significant capacitive coupling," says Haruki Kiyama. "As a result, the single-electron charging of one dot was detected as a change in the current of the other dot."

The current response of the sensor quantum dot depended on the number of electrons in the target dot. Hence the device can be used for real-time detection of single-electron tunneling in a quantum dot. The tunneling events of single electrons in and out of the target quantum dot were detected as switching between high and low current states in the sensor quantum dot. Detection of such tunneling events is important for the measurement of single spins towards electron spin qubits.

"Sensing single charges in self-assembled quantum dots is exciting for a number of reasons," explains Akira Oiwa. "The ability to achieve electrical readout of single electron states can be combined with photonics and used in quantum communications. In addition, our device concept can be extended to different materials and systems to study the physics of self-assembled quantum dots."

Real-time traces of the charge sensor quantum dot (QD1) current. Changes in the charge sensor current indicate the increase and decrease of electron number in the adjacent quantum dot (QD2). Credit: Osaka University

An electronic device using self-assembled quantum dots to detect single-electron events is a novel strategy for increasing our understanding of the physics of quantum dots and to aid the development of advanced nanoelectronics and quantum computing.

Explore further: Simultaneous detection of multiple spin states in a single quantum dot

More information: Haruki Kiyama et al, Single-electron charge sensing in self-assembled quantum dots, Scientific Reports (2018). DOI: 10.1038/s41598-018-31268-x

Related Stories

Single quantum dot nanowire photodetectors

December 14, 2010

Moving a step closer toward quantum computing, a research team in the Netherlands recently fabricated a photodetector based on a single nanowire, in which the active element is a single quantum dot with a volume of a mere ...

Recommended for you

Engineers produce smallest 3-D transistor yet

December 10, 2018

Researchers from MIT and the University of Colorado have fabricated a 3-D transistor that's less than half the size of today's smallest commercial models. To do so, they developed a novel microfabrication technique that modifies ...

New traffic rules in 'Graphene City'

December 6, 2018

In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of electrons, beyond charge. In work published today (Dec 7) in the journal Science, a team ...

Artificial synapses made from nanowires

December 6, 2018

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to save and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.