Research using atom probe tomography reveals chinks in iron crystals that can 'heal'

Rust never sleeps
Using iron isotopes and atom probe tomography, or APT, scientists create the first 3D 'atomic maps' of the re-arrangement of different iron atoms in a small iron oxide crystal. Credit: PNNL

Like iron flowing through the blood stream, iron minerals course through the ground. These minerals are used to make steel and other metal alloys used in everything from cell phone components and cars to buildings, industrial equipment and infrastructure.

Unfortunately, when exposed to oxygen and moisture, oxidizes—or rusts. And is relentless.

Knowing more about the that drive and sustain rust could hold clues for engineering-improved, iron-based materials. It could also lead to advances in fertilizers or soil conditioners that increase iron uptake for plant nutrition.

Scientists at the Department of Energy's Pacific Northwest National Laboratory report in the journal PNAS a breakthrough in visualizing the reactivity of rust minerals when deprived of oxygen, such as those below the . Using iron isotopes and , or APT, they traced these oxidation-reduction reactions to create the first 3-D "atomic maps" of the re-arrangement of different iron atoms in a small iron oxide crystal.

The APT maps revealed a surprisingly dynamic iron cycle, showing the continual movement of iron on and off the mineral surfaces.

"We saw that iron atoms in water specifically sought out and filled in tiny potholes, or defects, in the crystal surfaces," said Sandra Taylor, a post-doctoral research associate in PNNL's Geochemistry Group who conducted the measurements. "Seeing these recrystallized regions at the atomic scale showed us that the reaction can effectively 'heal' damaged areas on the crystal , and growth is driven by perfection."

Kevin Rosso, a PNNL Laboratory Fellow and lead investigator for the study, says the results confirm that reactions with rust minerals in soils and steel corrosion products are more dynamic than typically thought. They illustrate how rust persists on metal pipes under changing chemical conditions, enabling it to continually corrode and deteriorate over time.

The discovery capped a years-long effort to capture chemical composition measurements and images at the atomic scale in 3-D using APT. This sophisticated and challenging technique requires great skill to successfully probe the surfaces of nanoparticle iron oxides. The atom probe is located in the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility at PNNL.

"This study sets a new precedent for characterizing this important redox interface," said Rosso, adding that the results can be used to better understand a broad range of processes. These include understanding how crystals grow and dissolve, and also the underlying causes of corrosion and how it creates rust on surfaces—rust that never sleeps.


Explore further

A rusty green early ocean? Lab recreates one mechanism by which today's ore deposits originally formed

More information: Sandra D. Taylor el al., "Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography," PNAS (2019). www.pnas.org/cgi/doi/10.1073/pnas.1816620116
Citation: Research using atom probe tomography reveals chinks in iron crystals that can 'heal' (2019, February 4) retrieved 22 April 2019 from https://phys.org/news/2019-02-atom-probe-tomography-reveals-chinks.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
179 shares

Feedback to editors

User comments

Feb 04, 2019
Cars are built for the largest market, California. Beyond that, they don't care what happens to them in rust-belt and other states where road salt is used.

Feb 05, 2019
Iron is the most abundant metal in the Universe last I checked. The opportunity for structural and biological enhancements have become more attainable due to this research.
Iron Man would be proud...of himself.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more