Researchers uncover intracellular longevity pathway

January 31, 2019, Baylor College of Medicine
Dr. Meng Wang Credit: Baylor College of Medicine

The search for clues on how to live healthier, longer lives has led researchers at Baylor College of Medicine to look inside the cells of the worm Caenorhabditis elegans. The researchers report in the journal Developmental Cell the discovery of an intracellular pathway that mediates metabolic adjustments that promote health and longevity in the worm.

"In my lab, we study the regulation of longevity using C. elegans as the ," said corresponding author Dr. Meng Wang, professor in the Huffington Center on Aging, of molecular and human genetics and Robert C. Fyfe Endowed Chair on Aging at Baylor College of Medicine. "In this study, we looked for answers at the , investigating how intracellular compartments of the cell work together to keep the cell healthy and living longer."

Wang and her colleagues specifically looked at two essential organelles, or compartments, of : the lysosomes, mostly known as the scavenger center of the cell that breaks down cellular materials and recycles them, and the mitochondria, the structures in charge of respiration producing energy for the cell.

"In our previous work we found a specific lysosomal lipid signaling pathway that promotes longevity," said Wang, who also is a member of the Dan L Duncan Comprehensive Cancer Center and an investigator in the Howard Hughes Medical Institute. "Here we found that inducing this lysosomal signaling pathway activates specific mitochondrial genes, which in turn trigger a metabolic switch from using glucose to using fat as energy source, as well as other responses."

Cells can use either sugar or lipids as fuels, and switching from the former to the latter generates a number of cellular responses that improve metabolic fitness.

"Overall, the worms become leaner because they use lipids instead of sugar and at the same time they are better protected from oxidative damages. The result is that they have extended, healthier lifespan," Wang said. "This work is the first to show how lysosomes talk to mitochondria to regulate longevity."

The researchers anticipate that other cellular organelles also communicate with each other in regulating .

"Cellular organelles are very dynamic; they communicate with each other by physical interaction and/or by biochemical communication," Wang said. "We think that during the , this communication is disrupted, leading to a halt of communication or miscommunication between the organelles, which, in turn, can lead to metabolic problems, disease and aging. If we can understand how organelles communicate, we may find ways to help them to continue their conversation in ways that help the organism live healthier, longer."

Explore further: Gut bacteria might one day help slow down aging process

More information: Developmental Cell (2019). DOI: 10.1016/j.devcel.2018.12.022

Related Stories

Gut bacteria might one day help slow down aging process

June 15, 2017

Slowing down the aging process might be possible one day with supplements derived from gut bacteria. Scientists at Baylor College of Medicine and the University of Texas Health Science Center at Houston have identified bacterial ...

Lyosomes and mitochondria chat each other up in cell

January 24, 2018

Northwestern Medicine scientists have discovered that two key cellular structures, called mitochondria and lysosomes, come into direct contact with each other in the cell to regulate their respective functions. This rare ...

Scientists report inhibition of cellular aging

April 4, 2017

Aging is the deterioration of a cell's ability to divide and grow as it gets older. This causes degradation of the body and age-related diseases. Prevention of aging is an instinctive desire of humans; thus, it is a task ...

Nixing immaturity in red blood cells

May 4, 2008

A process of self-digestion called autophagy prompts the maturation of red blood cells. Without a protein called Nix, the cells would not effectively rid themselves of organelles called mitochondria and consequently become ...

Recommended for you

Great white shark genome decoded

February 18, 2019

The great white shark is one of the most recognized marine creatures on Earth, generating widespread public fascination and media attention, including spawning one of the most successful movies in Hollywood history. This ...

How our plants have turned into thieves to survive

February 18, 2019

Scientists have discovered that grasses are able to short cut evolution by taking genes from their neighbours. The findings suggest wild grasses are naturally genetically modifying themselves to gain a competitive advantage.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.