Ultra ultrasound to revolutionise technology

January 15, 2019, University of Queensland
Ultra ultrasound to revolutionise technology
Credit: University of Queensland

A new and extremely sensitive method of measuring ultrasound could revolutionise everything from medical devices to unmanned vehicles.

Researchers at The University of Queensland have combined modern nanofabrication and nanophotonics techniques to build the ultraprecise sensors on a silicon chip.

Professor Warwick Bowen, from UQ's Precision Sensing Initiative and the Australian Centre for Engineered Quantum Systems, said the development could usher in a host of exciting new technologies.

"This is a major step forward, since accurate ultrasound measurement is critical for a range of applications," he said.

"Ultrasound is used for medical ultrasound, often to examine , as well as for biomedical imaging to detect tumours and other anomalies.

"It's also commonly used for spatial applications, like in the sonar imaging of underwater objects or in the navigation of unmanned aerial vehicles.

"Improving these applications requires smaller, higher precision sensors and, with this new technique, that's exactly what we've been able to develop."

The technology is so sensitive that it can hear, for the first time, the miniscule random forces from surrounding air molecules.

"We've developed a near perfect ultrasound detector, hitting the limits of what the technology is capable of achieving," Professor Bowen said.

"We're now able to measure ultrasound waves that apply tiny forces – comparable to the gravitational force on a virus – and we can do this with sensors smaller than a millimetre across."

Research leader Dr. Sahar Basiri-Esfahani, now at Swansea University, said the accuracy of the could change how scientists understand biology.

"We'll soon have the ability to listen to the sound emitted by living bacteria and cells," she said.

"This could fundamentally improve our understanding of how these small biological systems function.

"A deeper understanding of these biological systems may lead to new treatments, so we're looking forward to seeing what future applications emerge."

The research is published in Nature Communications.

Explore further: Miniaturised pipe organ could aid medical imaging

More information: Sahar Basiri-Esfahani et al. Precision ultrasound sensing on a chip, Nature Communications (2019). DOI: 10.1038/s41467-018-08038-4

Related Stories

Ultrasound technology made to measure

January 6, 2015

The range of uses for ultrasound is gigantic; the applied technologies are just as diverse. Researchers are now covering a wide range of applications with a new modular system: From sonar systems to medical ultrasound technologies ...

Recommended for you

Multiple stellar populations detected in the cluster Hodge 6

February 18, 2019

Using ESO's Very Large Telescope (VLT), astronomers have found that the cluster Hodge 6 hosts multiple stellar populations. The detection could provide important hints on the formation and evolution of Hodge 6 and star clusters ...

Predicting sequence from structure

February 18, 2019

One way to probe intricate biological systems is to block their components from interacting and see what happens. This method allows researchers to better understand cellular processes and functions, augmenting everyday laboratory ...

Energetic particles can bombard exoplanets

February 18, 2019

TRAPPIST-1 is a system of seven Earth-sized worlds orbiting an ultra-cool dwarf star about 120 light-years away. The star, and hence its system of planets, is thought to be between five-to-ten billion years old, up to twice ...

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.