Compact fiber laser may enable wearable tech and better endoscopes

September 17, 2018, Optical Society of America

By creating a new twist on fiber optic sensors, researchers in China have developed a smart, flexible photoacoustic imaging technique that may have potential applications in wearable devices, instrumentation and medical diagnostics.

Lead researcher Long Jin from the Institute of Photonics Technology at Jinan University in Guangzhou will present the new fiber laser-based ultrasound sensor at the OSA Frontiers in Optics + Laser Science APS/DLS conference, being held 16-20 Sept., 2018 in Washington, D.C. Jin will also present the results of a study using an in vivo photoacoustic microscope.

The presentation is part of the "Advanced Microscopy" session on Monday, 17 September.

Their new technique relies on optical fiber technology to provide new sensors for photoacoustic imaging. It uses fiber-optic ultrasound detection, exploiting the acoustic effects on laser pulses via the thermoelastic effect—temperature changes that occur as a result of the elastic strain.

"Conventional fiber optic sensors detect extremely weak signals by taking advantage of their high sensitivity via phase measurement," said Jin. These same sorts of sensors are used in military applications to detect low-frequency (kilohertz) acoustic waves. But it turns out that they don't work so well for at the megahertz frequencies used for medical purposes because ultrasound waves typically propagate as spherical waves and have a very limited interaction length with optical fibers. The new sensors were specifically developed for medical imaging, Jin said, and can provide better sensitivity than the piezoelectric transducers in use today.

The group designed a special ultrasound sensor that's essentially a compact laser built within the 8-micron-diameter core of a single-mode optical fiber. "It has a typical length of only 8 millimeters," Jin said. "To build up the laser, two highly reflective grating mirrors are UV-written into the fiber core to provide optical feedback."

This fiber then gets doped with ytterbium and erbium to provide sufficient optical gain at 1,530 nanometers. They use a 980-nanometer semiconductor laser as the pump laser.

"Such fiber lasers with a kilohertz-order linewidth—the width of the optical spectrum—can be exploited as sensors because they offer a high signal-to-noise ratio," said research team member Yizhi Liang, an assistant professor at the Institute of Photonics Technology.

The ultrasound detection benefits from the combined technique because side-incident ultrasound waves deform the fiber, modulating the lasing frequency.

"By detecting the frequency shift, we can reconstruct the acoustic waveform," Liang said.

The team does not demodulate the ultrasound signal, extracting the original information, using conventional interferometry-based methods or any additive frequency locking. Rather, they use another method, called "self-heterodyning," where the result of mixing two frequencies is detected. Here, they measure the radio frequency-domain beat note given by two orthogonal polarization modes of the fiber cavity. This demodulation also intrinsically guarantees a stable signal output.

The fiber laser-based ultrasound offer opportunities for use in photoacoustic microscopy. The researchers used a focused 532-nanometer nanosecond pulse laser to illuminate a sample and excite ultrasound signals. They place a sensor in a stationary position near the biological sample to detect optically induced waves.

"By raster scanning the laser spot, we can obtain a photoacoustic image of the vessels and capillaries of a mouse's ear," Jin said. "This method can also be used to structurally image other tissues and functionally image oxygen distribution by using other excitation wavelengths—which takes advantage of the characteristic absorption spectra of different target tissues."

Optical fibers are useful because they are tiny, lightweight, and intrinsically flexible, Jin added.

"The development of our sensor is very encouraging because of its potential for endoscopes and wearable applications," Jin said. "But current commercial endoscopic products are typically millimeters in dimension, which can cause pain, and they don't work well within hollow organs with limited space."

Explore further: Versatile ultrasound system could transform how doctors use medical imaging

Related Stories

A fresh sensation in sensing technology

June 1, 2018

The Internet of Things (IoT) is a technology classification that includes home appliances and other items embedded with electronics, software, sensors, and actuators that connect and exchange data. One key IoT technology ...

Optical fibers that can sense the materials around them

July 31, 2018

In recent years optical fibers have served as sensors to detect changes in temperature, like a thermometer, and pressure, like an artificial nerve. This technique is particularly useful in structures such as bridges and gas ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.