More stable light comes from intentionally 'squashed' quantum dots

January 10, 2019, Los Alamos National Laboratory
More stable light comes from intentionally 'squashed' quantum dots
Novel colloidal quantum dots are formed of an emitting cadmium/selenium (Cd/Se) core enclosed into a compositionally graded CdxZn1-xSe shell wherein the fraction of zinc versus cadmium increases towards the dot's periphery. Due to a directionally asymmetric lattice mismatch between CdSe and ZnSe, the core, at top right, is compressed more strongly perpendicular to the crystal axis than along it. This leads to modifications of the electronic structure of the CdSe core, which beneficially affects its light-emission properties. Bottom image: Experimental traces of emission intensity from a conventional quantum dot (upper panel) and a novel asymmetrically compressed quantum dot (lower panel) resolved spectrally and temporally. The emission from the conventional quantum dot shows strong spectral fluctuations ("spectral jumps" and "spectral diffusion"). The emission from the asymmetrically compressed quantum dots is highly stable in both intensity and spectral domains. In addition, it shows a much narrower linewidth, which is below the room-temperature thermal energy (25 meV). Credit: Los Alamos National Laboratory

Intentionally "squashing" colloidal quantum dots during chemical synthesis creates dots capable of stable, "blink-free" light emission that is fully comparable with the light produced by dots made with more complex processes. The squashed dots emit spectrally narrow light with a highly stable intensity and a non-fluctuating emission energy. New research at Los Alamos National Laboratory suggests that the strained colloidal quantum dots represent a viable alternative to presently employed nanoscale light sources, and they deserve exploration as single-particle, nanoscale light sources for optical "quantum" circuits, ultrasensitive sensors, and medical diagnostics.

"In addition to exhibiting greatly improved performance over traditional produced , these new strained dots could offer unprecedented flexibility in manipulating their emission color, in combination with the unusually narrow, 'subthermal' linewidth," said Victor Klimov, lead Los Alamos researcher on the project. "The squashed dots also show compatibility with virtually any substrate or embedding medium as well as various chemical and biological environments."

The new colloidal processing techniques allow for preparation of virtually ideal quantum-dot emitters with nearly 100 percent emission quantum yields shown for a wide range of visible, infrared and ultraviolet wavelengths. These advances have been exploited in a variety of light-emission technologies, resulting in successful commercialization of quantum-dot displays and TV sets.

The next frontier is exploration of as single-particle, nanoscale light sources. Such future "single-dot" technologies would require particles with highly stable, nonfluctuating spectral characteristics. Recently, there has been considerable progress in eliminating random variations in emission intensity by protecting a small emitting core with an especially thick outer layer. However, these thick-shell structures still exhibit strong fluctuations in emission spectra.

In a new publication in the journal Nature Materials, Los Alamos researchers demonstrated that spectral fluctuations in single-dot emission can be nearly completely suppressed by applying a new method of "strain engineering." The key in this approach is to combine in a core/shell motif two semiconductors with directionally asymmetric lattice mismatch, which results in anisotropic compression of the emitting core.

This modifies the structures of electronic states of a dot and thereby its emitting properties. One implication of these changes is the realization of the regime of local charge neutrality of the emitting "exciton" state, which greatly reduces its coupling to lattice vibrations and fluctuating electrostatic environment, key to suppressing fluctuations in the emitted spectrum. An additional benefit of the modified electronic structures is dramatic narrowing of the linewidth, which becomes smaller than the room-temperature thermal energy.

Explore further: Sandwich structure of nanocrystals as quantum light source

More information: Young-Shin Park et al, Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths, Nature Materials (2018). DOI: 10.1038/s41563-018-0254-7

Related Stories

Sandwich structure of nanocrystals as quantum light source

November 8, 2018

Excited photo-emitters can cooperate and radiate simultaneously, a phenomenon called superfluorescence. Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create ...

Many colours from a single dot

February 19, 2018

Physicists Bart van Dam and Katerina Newell (Dohnalova) from the UvA Institute of Physics, in collaboration with Emanuele Marino and Peter Schall as well as colleagues from the University of Twente and Jiljin University in ...

Quantum dot ring lasers emit colored light

January 22, 2018

Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. The different colors are emitted from different parts of the quantum dot—red from the core, green from ...

Coupling of Single Quantum Dots to Smooth Metal Films

July 20, 2009

Scientists at Argonne National Laboratory's CNM Nanophotonics Group have measured how light emission from individual colloidal semiconductor nanocrystals, or quantum dots, is modified when in proximity to smooth metal films. ...

Quantum dots light up under strain

September 23, 2015

Semiconductor nanocrystals, or quantum dots, are tiny, nanometer-sized particles with the ability to absorb light and re-emit it with well-defined colors. With low-cost fabrication, long-term stability and a wide palette ...

Using one quantum dot to sense changes in another

September 20, 2018

Quantum dots are nanometer-sized boxes that have attracted much scientific interest for use in nanotechnology because their properties obey quantum mechanics and are requisites to developing advanced electronic and photonic ...

Recommended for you

Bright colors produced by laser heating

January 15, 2019

Most of the colors on today's paper and fabric are made using dyes or pigments. But colors can also be produced by modifying a material's surface at the nanoscale, causing the surface to reflect or scatter different frequencies ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.