Shiftless: Novel host antiviral factor that inhibits programmed -1 ribosomal frameshifting

January 28, 2019, Chinese Academy of Sciences

The genome sizes of viruses are usually relatively small. To increase information content of the genome, many viruses employ a translation recoding mechanism dubbed programmed ribosomal frameshifting.

Translating ribosomes pause at a -1PRF signal. While most ribosomes move on in the original reading frame, a small proportion slip back one nucleotide to translate in a new frame, resulting in two protein products differing at the C-termini. HIV-1 uses programmed -1 ribosomal frameshifting (-1PRF) to produce Gag and Gag-Pol, which are both required for viral replication.

The -1PRF mechanism exists in all domains of life. In eukaryotes, -1PRF may also result in a premature stop codon, which could lead to the degradation of mRNA. The -1PRF mechanism plays an important role in the post-transcriptional regulation of gene expression. However, how -1PRF is regulated by is largely unknown. In a study published in Cell, GAO Guangxia's group at the Institute of Biophysics of the Chinese Academy of Sciences reported a novel host antiviral factor named Shiftless that inhibits -1PRF.

GAO's lab has been focusing on the underlying virus-host interactions. To identify host factors that inhibit -1PRF, they demonstrated that type I interferon can inhibit the expression of Gag-Pol, the -1PRF product of HIV-1. By screening interferon-stimulated genes (ISG) for their capacity to inhibit Gag-Pol expression, they identified Shiftless (originally named C19orf66).

Shiftless displayed considerable inhibitory activity against all the tested -1PRF from both viruses and cellular genes, indicating that it is a broad-spectrum -1PRF inhibitor.

To explore the mechanism of Shiftless, researchers analyzed the interactions of Shiftless with the -1PRF RNA and translating ribosomes, two key players in the process of -1PRF. Shiftless interacted with both. Based on this result, they reasoned that Shiftless binding to the translating ribosomes and RNA simultaneously might render the stuck in a non-productive state, stalling on the RNA. The stalled ribosome should be rescued by the quality control mechanism, leading to premature termination.

Using a sensitive reporter system, they detected the premature translation termination product, proving their hypothesis. They demonstrated that the premature translation termination was executed by the host translation release factors eRF1 and eRF3.

Moreover, researchers proposed a working model for Shiftless to inhibit -1PRF. Shiftless interacts with the -1PRF signal RNA and the translating ribosome, and thereby causes ribosome stalling at the -1PRF site. Furthermore, Shiftless recruits the translation release factors eRF1-eRF3 to rescue the stalled ribosome, resulting in the production of premature translation termination (PMT) product.

Since -1PRF is a widely used , these results have far reaching implications that may impact many different fields.

Explore further: On building ribossomes

More information: Xinlu Wang et al, Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting, Cell (2019). DOI: 10.1016/j.cell.2018.12.030

Related Stories

On building ribossomes

April 18, 2018

Ribosomes are organelles responsible for protein synthesis in all living organisms. Ribosomes are made of proteins and RNA (Ribosomal RNA, rRNA) and putting the several elements in the right location requires a precise multi-step ...

Ribosome recycling as a drug target

December 5, 2016

Ludwig Maximilian University of Munich researchers have elucidated a mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons. The protein involved provides a potential target for ...

Looking beyond genes to explain blood cells' fates

March 19, 2018

Scientists often talk about cell fate and commitment in terms of mechanisms that control gene expression (transcription factors, chromatin remodeling, etc.). But by studying Diamond-Blackfan anemia (DBA), rare genetic blood ...

Recommended for you

Inert nitrogen forced to react with itself

March 21, 2019

Constituting over 78 % of the air we breathe, nitrogen is the element found the most often in its pure form on earth. The reason for the abundance of elemental nitrogen is the incredible stability and inertness of dinitrogen ...

Two-step path to shrinking worker bee gonads

March 21, 2019

The dramatic difference in gonad size between honey bee queens and their female workers in response to their distinct diets requires the switching on of a specific genetic program, according to a new study publishing March ...

Plant immunity cut to size

March 21, 2019

An international team based in Ghent, Belgium (VIB-UGent Center for Plant Systems Biology) and Basel, Switzerland (University of Basel), found a link between a class of enzymes and immune signals that is rapidly triggered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.