Scientists develop method for observing nanocrystal formation at atomic resolution

January 28, 2019, University of California, Irvine
Study co-author Xiaoqing Pan, director of the Irvine Materials Research Institute at UCI, said that the new technique for imaging the transformation of a precursor compound containing platinum into nanocrystals can be applied to other materials science research pursuits. Credit: Steve Zylius / UCI

Scientists at UCI's Irvine Materials Research Institute have made a breakthrough in directly imaging a platinum precursor compound and its dynamic transformation into nanocrystals. The observation was made in real space and time in IMRI's state-of-the-art transmission electron microscope facility. The research team's results were published today in Science Advances.

Knowing the dynamics and kinetics of materials transformation is useful in that it can lead to the ability to fine-tune substances to exhibit desired properties beneficial in fields ranging from energy conversion and storage to pharmaceuticals. Scientists have previously had difficulty imaging the nucleation and growth of novel crystalline nanomaterials because their chemical precursors are highly sensitive to the electron beams needed for atomic-resolution microscopy.

"These have weak bonds, so the very act of observing them in the early stages of transformation via TEM prompts ionic reduction and damage to the ," said Xiaoqing Pan, IMRI director and Henry Samueli Endowed Chair in Engineering at UCI.

"Our approach was to use an ultra-low electron dose in our TEM, which enabled us to identify the structure, capture and reveal the dynamics of the staged reduction of the compound," said study co-author Pan, who is also a UCI professor of materials science & engineering as well as physics & astronomy. He said that this new method of achieving atomic-scale resolution of the phase change of platinum compounds from precursors to nanoclusters can be employed in the study of such dynamics across the science research field.

The study was supported by IMRI and the National Science Foundation.

Explore further: Engineers pioneer platinum shell formation process, achieve first-ever observation

More information: Wenpei Gao et al. Probing the dynamics of nanoparticle formation from a precursor at atomic resolution, Science Advances (2019). DOI: 10.1126/sciadv.aau9590

Related Stories

Recommended for you

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.