Engineers pioneer platinum shell formation process, achieve first-ever observation

August 9, 2017, University of California, Irvine
A shell of platinum grows layer by layer during oxygen annealing. Credit: Pan Group / UCI

UCI researchers have devised a new method of dynamically forming a platinum shell on a metallic alloy nanoparticle core, a development that may lead to better materials for oxygen reduction reactions in fuel cells that power some cars and electronic devices. In a first, engineers were able to observe the process directly, in real time, in UCI's state-of-the-art transmission electron microscopy facility, part of the recently established Irvine Materials Research Institute.

Reported in Nature Communications, the method centers on an oxygen annealing treatment to enrich the concentration of the metal on the platinum-cobalt nanomaterial core, a more effective procedure than traditional acid leaching or reductive annealing, according to the research team.

"A deeper understanding of platinum shell formation is critical for synthesis and structural control of platinum-metallic nanoparticles," said team leader Xiaoqing Pan, Henry Samueli Endowed Chair in Engineering and professor of chemical engineering & science at UCI. "We were able to achieve atomic-scale observation of the reaction process at atmospheric pressures in our TEM, something that has never been successfully accomplished until now."

Pan, who's also the inaugural director of the Irvine Materials Research Institute and a professor of physics & astronomy, said his group's work "may open a new avenue to study gas-solid interactions at atomic scale under the atmospheric pressure at which many real gas-phase reactions take place."

The project was supported by IMRI and the National Science Foundation.

Explore further: Rough surfaces provide additional sites for energy-generating reactions in fuel cells

More information: Sheng Dai et al. In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles, Nature Communications (2017). DOI: 10.1038/s41467-017-00161-y

Related Stories

Study reveals exactly how low-cost fuel cell catalysts work

August 3, 2017

In order to reduce the cost of next-generation polymer electrolyte fuel cells for vehicles, researchers have been developing alternatives to the prohibitively expensive platinum and platinum-group metal (PGM) catalysts currently ...

Recommended for you

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.