Ammonia synthesis through electroreduction of nitrogen on black phosphorus nanosheets

January 16, 2019, Wiley
Ammonia synthesis through electroreduction of nitrogen on black phosphorus nanosheets
Credit: Wiley

More than 100 years after the introduction of the Haber–Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding. Chinese scientists have now discovered that black phosphorus is an excellent catalyst for the electroreduction of nitrogen to ammonia. According to their study published in the journal Angewandte Chemie, layered black phosphorus nanosheets are a highly selective and efficient catalyst in this process.

Ammonia is an essential raw material in all industrial areas, from agriculture to fine chemicals and the pharmaceutical industry. For more than a century, it has been synthesized industrially by the Haber–Bosch process, in which from air is reduced with hydrogen or synthesis gas under and temperature over a transition-metal catalyst. However, the energy demand of this process is so high that one to two percent of the global energy supply is devoted to industrial production of ammonia.

Researchers are in search of milder alternatives, which employ catalysts that operate under ambient conditions. Metal-free alternatives are especially desirable. A highly interesting candidate is in its lowest reactivity, nontoxic form: black phosphorus. This material is a in because of its metallic-like appearance and unusual electronic properties. Moreover, its puckered two-dimensional sheet-like structure may provide the necessary edges and sites for adsorption and molecular activation.

With this idea in mind, researcher Haihui Wang at the South China University of Technology, Guangzhou, China, and colleagues, prepared thin layers of bulk black phosphorus, "by a facile liquid exfoliation method," as stated in their publication. The catalyst nanosheets were included in a carbon fiber electrode for electrolysis. To provide a nitrogen supply, a hydrochloride electrolyte solution was saturated with nitrogen.

On application of a voltage, the electrode readily and selectively produced ammonia from nitrogen, and the layered black phosphorus even outperformed "most nonmetallic and metal-base catalysts reported at present," added the authors. The extraordinary activity and selectivity of this material are explained by the structure and energetics of the phosphorus sheets.

What is so special about phosphorus? With theoretical calculations, the authors found that the zigzag arrangement in the phosphorus layers, in contrast to other layered or flat materials, provided ideal sites for nitrogen adsorption and the electronic structure at the edges was best suited for binding, activating, and reducing nitrogen by a low-energy pathway.

Having explained the extraordinary activity and selectivity of the layered black phosphorus , the authors admitted that—despite the generally good stability of black phosphorus under ambient conditions—its performance declined in the long term because of oxidation. "Thus, further improvements in preventing black phosphorus degradation in the electrolyte will be beneficial," they concluded.

This work opens up a novel and attractive application for black phosphorus. In electrocatalytic nitrogen reduction, the performance of is superior to other nonmetallic and even metallic catalysts, suggesting that this material may soon play a bigger role in electrocatalysis. In time, perhaps even the Haber–Bosch process will have a competitor.

Explore further: Blue phosphorus—mapped and measured for the first time

More information: Lili Zhang et al. Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets, Angewandte Chemie International Edition (2018). DOI: 10.1002/anie.201813174

Related Stories

Blue phosphorus—mapped and measured for the first time

October 16, 2018

Until recently, the existence of 'blue' phosphorus was pure theory. Now, an HZB team has examined samples of blue phosphorus at BESSY II for the first time and mapped their electronic band structure. They report that it represents ...

The comeback kid—black phosphorus and its new potential

July 5, 2017

When it was discovered over a century ago, black phosphorus was considered relatively useless. Over the past five years, however, the engineers and chemists have become intrigued by the material for its potential as an ultra-thin ...

Making ammonia 'greener'

January 11, 2019

Ammonia, a compound first synthesized about a century ago, has dozens of modern uses and has become essential in making the fertilizer that now sustains most of our global food production.

Nitrogen fixation in ambient conditions

November 12, 2018

Abundant in the atmosphere, nitrogen is rarely used in the industrial production of chemicals. The most important process using nitrogen is the synthesis of ammonia used for the preparation of agricultural fertilizers.

Black phosphorus doesn't mind de-aerated water

December 1, 2016

Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science(IBS) have discovered that one of graphene's competitors, black phosphorus, is inert to water deprived of oxygen, ...

Research team finds a way to produce black phosphorus in bulk

January 15, 2015

(Phys.org)—A team of researchers working at Trinity College in Ireland has found a way to produce black phosphorus in bulk, theoretically paving the way for its use in real applications. They have written a paper describing ...

Recommended for you

Fish-inspired material changes color using nanocolumns

March 20, 2019

Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.