Trees' enemies help tropical forests maintain their biodiversity

December 24, 2018, Oregon State University
Tropical forest diversity. Credit: Oregon State University

Scientists have long struggled to explain how tropical forests can maintain their staggering diversity of trees without having a handful of species take over—or having many other species die out.

The answer, researchers say, lies in the soil found near individual , where natural "enemies" of tree reside. These enemies, including fungi and arthropods, attack and kill many of the seeds and seedlings near the , preventing local recruitment of trees of that same species.

Also playing a key role in the tropical dynamic are seed dispersers. Seeds from individual trees that are carried a distance away—often by rodents, mammals or birds—have a chance to get established because the fungi and arthropods in the new region target different species. This restriction of tree recruitment near the adult trees creates a long-term stabilizing effect that favors rare species and hinders common ones, the researchers say.

Overturning previous theory, the researchers demonstrate that these interactions with enemies are important enough to maintain the incredible diversity of tropical forests. Results of the study are being published this week in Proceedings of the National Academy of Sciences (PNAS).

"In many North American forests, trees compete for space and some have a niche that allows them to outcompete others," said Taal Levi, an Oregon State University ecologist and lead author on the study. "Douglas-firs are the species that grow best after a fire. Hemlock thrives in the shade and grows well under a canopy. Some species do well at elevation.

"But in the tropics, all of the tree species appear to have a similar competitive advantage. There is an abundance of species, but few individuals of each species. The chances of blinking out should be high. But there has to be a mechanism that keeps one species from becoming common, becoming dominant. And it is these that have a high host-specificity."

Egbert Leigh, of the Smithsonian Tropical Research Institute, best described the diversity of tropical forests in one statement: "How can a half square-kilometer (of forest) in Borneo or Amazonia contain as many tree species as 4.2 million kilometers of temperate zone forest in Europe, North American and Asia combined?"

Levi said some tropical forests have as many as 1,000 different tree species living in the same general area. The idea of natural enemies restricting the recruitment of juvenile trees is not new, he said, and in fact was posited nearly a half-century ago by two scientists in what has become known as the Janzen-Connell hypothesis.

Although Janzen-Connell effects should prevent one species from taking over, they don't explain or predict how a thousand tree species can be maintained together. In fact, previous researchers suggested that the Janzen-Connell effects could only maintain a very few species, and thus were relatively unimportant to the overall maintenance of tropical forest diversity.

Instead, Levi and his colleagues from the University of Florida, Oregon State, and James Cook University in Australia says this close relationship between trees and their natural enemies is the key to tropical forest diversity. They found that if fungi, arthropods and other natural enemies produce even small zones around trees where a new tree of the same species cannot establish, then the very high levels of tree diversity observed in can be maintained almost indefinitely.

"There is a 'seed shadow' around adult trees and some escape the curve and get out, allowing recruitment in other areas until the host-specific enemies get established in the new location," Levi said. "That's why it is critically important to maintain the biodiversity of birds and mammals in these forests, or recruitment eventually will decline—especially in over-hunted areas."

Levi is in Oregon State's Department of Fisheries and Wildlife, in the College of Agricultural Sciences.

Explore further: 'Cryptic' interactions drive biodiversity decline near the edge of forest fragments

More information: Taal Levi el al., "Tropical forests can maintain hyperdiversity because of enemies," PNAS (2018).

Related Stories

Tropical tree mortality—new study reveals why trees die

November 21, 2018

A study by scientists at UNSW Sydney, Macquarie University, data61 and the Smithsonian Tropical Research Institute has shown why some tropical tree species die and others survive, revealing new insights into the processes ...

Inequality is normal: Dominance of the big trees

May 8, 2018

The top 1% of the forest has been sharing some vital information with researchers. Ninety-eight scientists and thousands of field staff have concluded the largest study undertaken to date with the Smithsonian Forest Global ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.