New optical device brings quantum computing a step closer

quantum computer
Credit: CC0 Public Domain

An international team of researchers has taken a big step closer to creating an optical quantum computer, which has the potential to engineer new drugs and optimise energy-saving methods.

The research team developed the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is essential for computation. An optical microchip has most of the basic functionality required for creating future quantum computers.

Griffith University in Queensland led the project in collaboration with the University of Munster in Germany, The Australian National University (ANU) and the University of New South Wales-Canberra, supported by the ARC Centre of Excellence for Quantum Computation and Communication Technology.

Co-researcher Professor Elanor Huntington, Dean of the ANU College of Engineering and Computer Science, and program manager for the ARC Centre of Excellence for Quantum Computation and Communication Technology, was thrilled with this significant advancement.

 "What we have demonstrated with this device is an important technological step towards making an optical quantum , which will solve certain problems much faster than today's computers," Professor Huntington said.

The microchip - which is 1.5cm wide, 5cm long and 0.5cm thick - has components inside that interact with light in different ways. These components are connected by tiny channels called waveguides that guide the light around the , in a similar way that wires connect different parts of an electric circuit.

Associate Professor Mirko Lobino from Griffith University said the research team was working towards the next generation of optical microchips required for practical quantum computers.

"Aside from being able to engineer new drugs and materials, and improve energy-saving methods, optical will enable ultra-fast database searches and help solve difficult mathematical problems in many different fields," he said.

Dr Francesco Lenzini from the University of Munster, who is the lead author of the team's Science Advances paper, said the research overcame one of the major challenges to making an optical quantum computer.

"This experiment is the first to integrate three of the basic steps needed for an optical quantum computer, which are the generation of quantum states of light, their manipulation in a fast and reconfigurable way, and their detection," he said.

Citation: New optical device brings quantum computing a step closer (2018, December 10) retrieved 12 June 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Tiny camera lens may help link quantum computers to network


Feedback to editors