Controlling photons with a photon

June 28, 2018, University of Electro Communications
Vacuum chamber with high-finesse optical resonator and cold atoms. Credit: University of Electro Communications

Photons are considered to be ideal information carriers and expected to play important roles in quantum communication and information processing, where quantum mechanics allows for absolutely secure cryptographic key distribution as well as computation much faster than conventional computers. In order to take full advantage of quantum information carried by photons, it is important to make them directly interact with each other for information processing.

However, photons generally do not interact with one another. So it is necessary to mediate such interactions with matter to realize effective photon-photon interaction, but light-matter interaction is usually extremely weak in normal media.

Haruka Tanji-Suzuki and colleagues at the Institute for Laser Science, the University of Electro-Communications, Tokyo, are currently working to develop all-optical quantum devices that are sensitive to a single photon input, such as a single photon switch in which an incoming photon switches the state of another photon.

In order to realize the strong that is necessary for such devices, Tanji-Suzuki uses a laser-cooled ensemble of 87Rb atoms (~10 uK) trapped within a high-finesse optical resonator (finesse ~50000) in an ultrahigh-vacuum chamber. Notably, in order to switch a photon with a photon in such a system, the researchers use an effect known as 'vacuum-induced transparency' observed recently by Tanji-Suzuki et al., in which an electromagnetic field as weak as a vacuum field (light with no photons) is shown to alter the optical properties of atoms.

"The realization of such all-optical single- devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical ," says Tanji-Suzuki.

Explore further: Researchers subtract a single quantum of light from a laser beam

More information: H. Tanji-Suzuki et al. Vacuum-Induced Transparency, Science (2011). DOI: 10.1126/science.1208066

Related Stories

Controlled coupling of light and matter

March 6, 2018

Researchers from Würzburg and London have succeeded in controlling the coupling of light and matter at room temperature. They have published their results in Science Advances.

Quantum processor for single photons

July 7, 2016

"Nothing is impossible!" In line with this motto, physicists from the Quantum Dynamics Division of Professor Gerhard Rempe (director at the Max Planck Institute of Quantum Optics) managed to realise a quantum logic gate in ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.