Artificial intelligence predicts rogue waves of light

December 7, 2018, Tampere University of Technology
Using a trained neural network from numerical simulations, researchers are able to predict the intensity of extreme waves of light emerging at the output of an optical fiber from unstable nonlinear propagation governed by the nonlinear Schrödinger equation. Credit: Goëry Genty

In a recent study published in Nature Communications, an international team of researchers from Tampere University of Technology (TUT), Finland, and the Institut FEMTO-ST at the Université Bourgogne-Franche Comté, France, take a significant step toward the analysis and predictability of rogue waves that appear seemingly out of nowhere.

Stories of giant ocean waves with great destructive power are the stuff of legend and folklore, but today their scientific study is a critical area of multidisciplinary research spanning oceanography, physics and mathematics. A particular problem faced by researchers is that these extreme waves arise seemingly randomly on the ocean's surface, and it appears impossible to predict the conditions that may precede their appearance. A related practical difficulty is that it is not always possible to measure such waves completely, and the available instrumentation most often captures only a portion of the wave characteristics.

In recent experiments studying analogous of light, researchers have used artificial intelligence to study this problem, and have now determined a probability distribution that preferentially identifies the emergence of rogue waves. The particular novelty of this work is that the researchers trained a neural network to identify the particular time-domain properties of rogue waves with the highest and most extreme intensities from only partial information on the wave characteristics in the frequency or wavelength domain. 

The experiments were performed by injecting laser pulses into an optical fibre system designed to reproduce wave propagation described by a nonlinear Schrödinger equation, a model that can also apply to water waves. Using an instrument developed especially to measure optical spectra in real time with , the researchers compiled a data set of thousands of noisy spectral signals from a nonlinear process called modulation instability, which is believed to be associated with some classes of rogue waves on the ocean.  

Although optical spectra are easy to measure, they do not show the presence of rogue waves directly. But by using powerful numerical simulations to train a , it was possible to develop an algorithm that could accurately pick out features in the spectra that predict the emergence of a rogue wave, even though these features were essentially invisible to the eye of a researcher. 

"Remarkably, the algorithm was shown to be capable of predicting the peak intensity of a rogue wave associated with any particular spectral measurement, even though experiments never actually measured the rogue wave intensity directly," says Professor Goëry Genty, who led the team at Tampere University of Technology.

The results obtained yielded a for the appearance of the optical rogue waves and were also used to classify the spectral measurements into different sets associated with different types of .  

"As well as suggesting that similar techniques can be used to analyse measurements on oceanographic wave data, the results open new perspectives in all fields of research where direct time domain observations are difficult, but where spectral data is available," concludes Professor Dudley, who headed the team at the Université Bourgogne-Franche Comté.

Explore further: Optical rogue waves: The storm in a test tube

More information: Mikko Närhi et al. Machine learning analysis of extreme events in optical fibre modulation instability, Nature Communications (2018). DOI: 10.1038/s41467-018-07355-y

Related Stories

Optical rogue waves: The storm in a test tube

December 23, 2013

Random processes in nature often underlie a so-called normal distribution that enables reliable estimation for the appearance of extreme statistical events. Meteorological systems are an exception to this rule, with extreme ...

Studies in laser physics help understand rogue waves

September 29, 2014

( —University of Auckland physicist Dr Miro Erkintalo is part of an international team investigating how lasers and optical fibres can be used to understand freakishly large waves on the ocean.

Understanding rogue ocean waves may be simple after all

June 21, 2016

An international team of scientists has developed a relatively simple mathematical explanation for the rogue ocean waves that can develop seemingly out of nowhere to sink ships and overwhelm oil platforms with walls of water ...

Lego pirate proves, survives, super rogue wave

April 4, 2012

( -- Scientists have used a Lego pirate floating in a fish tank to demonstrate for the first time that so-called ‘super rogue waves’ can come from nowhere in apparently calm seas and engulf ships.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Recommended for you

A quantum magnet with a topological twist

February 22, 2019

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons ...

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 02, 2019
This, of course, implies the potential rise of electrical rouge waves, in things like the complex harmonics of audio signals in complex electrical environments, as is encountered in any electrical aspect of signal propagation in audio gear of all kinds.


As those environments border on being incalculable and basically...chaos.

Please don't respond unless you REALLY know your complex electrical theory in the real world, not the simplified engineering numbers which relate only to bare wire in air at extreme lengths and single frequencies. thank you...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.