Optical rogue waves: The storm in a test tube

December 23, 2013
Figure 1. Subsequent camera snapshots of a measured rogue wave event. Intensity is visualized as wave height. The incident is isolated both in space and time. The wave appears within a split second without a warning and also disappears rapidly.

Random processes in nature often underlie a so-called normal distribution that enables reliable estimation for the appearance of extreme statistical events. Meteorological systems are an exception to this rule, with extreme events appearing at a much higher rate than could be predicted from long-term observation at much lower magnitude. One such example is the appearance of unexpectedly strong storms, yet another are rare reports of waves of extreme height in the ocean, which are also known as rogue waves or monster waves.

About 5 years ago, rogue behavior was first reported for propagation of light pulses through an optical fiber, i.e., a completely different physical system. Given that observation of requires comparatively little effort, this work has initiated a new research direction on optical rogue waves. In a publication in Physical Review Letters, Birkholz et al. now demonstrate the appearance of rogue waves in a new optical system.

Other than in previous publications, optical rogue waves in this system are clearly ruled by atmospheric turbulence in a , effectively enabling the observation of a storm in a test tube. This microscopic meteorological phenomenon is based on mergers between individual light strings (so-called filaments) in the gas cell. The merger events give rise to the observation of short light flashes, which can actually be observed by the naked eye. Careful statistical evaluation of the measured data indicates that these optical are much more extreme than their ocean equivalents.

Subsequent camera snapshots of a measured rogue wave event. Intensity is visualized as wave height. The incident is isolated both in space and time. The wave appears within a split second without a warning and also disappears rapidly.

While, in the ocean, a wave already qualifies as rogue if it exceeds the significant wave height by a factor two, we find that exceed this threshold by more of a factor ten - a truly rough optical sea.

Explore further: Making monster waves

More information: Simon Birkholz, Erik T. J. Nibbering, Carsten Brée, Stefan Skupin, Ayhan Demircan, Goëry Genty, and Günter Steinmeyer, "Spatiotemporal Rogue Events in Optical Multiple Filamentation", Physical Review Letters 111, 243903 (2013). DOI: 10.1103/PhysRevLett.111.243903

Related Stories

Making monster waves

October 19, 2009

Rogue waves -- giant waves that spring up suddenly and tower over the seas around them—have inspired physicists to look for an analogue in light. These high-intensity pulses can cross large distances without losing information. ...

Lego pirate proves, survives, super rogue wave

April 4, 2012

(PhysOrg.com) -- Scientists have used a Lego pirate floating in a fish tank to demonstrate for the first time that so-called ‘super rogue waves’ can come from nowhere in apparently calm seas and engulf ships.

Understanding freak waves

September 27, 2011

(PhysOrg.com) -- Rogue waves, once considered nothing more than a sailor’s myth, are more predictable than ever thanks to new research from the oceanography team at Swinburne University of Technology.

Peregrine's 'Soliton' observed at last

August 23, 2010

(PhysOrg.com) -- An old mathematical solution proposed as a prototype of the infamous ocean rogue waves responsible for many maritime catastrophes has been observed in a continuous physical system for the first time.

Rogue wave recreated in laboratory tank

May 24, 2011

(PhysOrg.com) -- A team of researchers have used a mathematical equation to create a so called "rogue" wave; the giant kind that appear out of nowhere in the open ocean to topple ships and drown their crews. Using one solution ...

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.