Researchers develop sustainable 'nano-raspberry' to neutralize poisonous carbon monoxide

November 21, 2018, Nagoya Institute of Technology
Synthesis of cobalt oxide particles with complex, three-dimensional, raspberry-shaped nanostructures via hydrothermal treatment. Sodium sulfates functioned as bridging ligands to promote self-assembly and suppress particle growth. The highly ordered and complex surface nanostructure with 7-8 nm in diameter shows good structural stability and high activity in CO oxidation reaction. Credit: NITech

Scientists from the Nagoya Institute of Technology (NITech) in Japan have developed a sustainable method to neutralize carbon monoxide, the odorless poison produced by cars and home boilers. Their results were featured on the cover of the September issue of the journal Nanomaterials.

Traditionally, needs a —a rare and expensive ingredient—to convert into carbon dioxide and readily dissipate into the atmosphere. Although the noble metal ensures structural stability at a variety of temperatures, it's a cost-prohibitive and finite resource and have been anxious to find an alternative.

Now, a team led by Dr. Teruaki Fuchigami at the NITech has developed a raspberry-shaped nanoparticle capable of the same oxidation process that makes carbon monoxide gain an extra oxygen atom and lose its most potent toxicity.

"We found that the raspberry-shaped particles achieve both high structural stability and high reactivity even in a single nanoscale surface structure," said Dr. Fuchigami, an assistant professor in the Department of Life Science and Applied Chemistry at the NITech and first author on the paper.

The key, according to Dr. Fuchigami, is ensuring the particles are highly complex but organized. A single, simple particle can oxidize carbon monoxide, but it will naturally join with other simple particles. Those simple particles compact together and lose their oxidation abilities, especially as temperatures rise in an engine or boiler.

Catalytic nanoparticles with single nano-scale and complex three-dimensional (3-D) structures can achieve both high and high catalytic activity, however, such nanoparticles are difficult to produce using conventional methods. Dr. Fuchigami and his team worked to control not only the size of the particles, but also how they assembled together. They used , a noble metal alternative that can oxidize well but eventually presses together and becomes inactive.

The researchers applied sulfate ions to formation process of the cobalt oxide particle. The sulfate ions grasp the particles, creating a chemically bonded bridge. Called a , this bridge holds the nanoparticles together while also inhibiting the clumping growth that would lead to a loss of catalytic activity.

The resulting particle looked like a raspberry: small cells bound together into something greater than the sum of its parts.

"The phenomenon of crosslinking two substances has been formulated in the field of metal-organic framework research, but, as far as we can tell, this is the first report in oxide nanoparticles. The effects of bridging ligands on the formation of oxide nanoparticles, which will be helpful to establish a synthesis theory for complex 3-D nanostructures," Dr. Fuchigami said of the raspberry-shaped nanostructure.

The unique surface nanostructure of the -shaped remained stable even under the harsh catalytic reaction process, improving the low-temperature CO oxidation activity.

Dr. Fuchigami and his will continue to study the bridging ligands with the goal of precisely controlling the design aspect of nanomaterials, such as the size and morphology.

Ultimately, they plan to discover the most stable and active configuration for chemical catalysis and other applications.

Explore further: Metallic nanoparticles light up another path towards eco-friendly catalysts

More information: Teruaki Fuchigami et al, Complex Three-Dimensional Co3O4 Nano-Raspberry: Highly Stable and Active Low-temperature CO Oxidation Catalyst, Nanomaterials (2018). DOI: 10.3390/nano8090662

Related Stories

Researchers convert CO to CO2 with a single metal atom

March 5, 2018

Researchers from Washington State University and Tufts University have demonstrated for the first time that a single metal atom can act as a catalyst in converting carbon monoxide into carbon dioxide, a chemical reaction ...

Visualizing chemical reactions on bimetal surfaces

July 26, 2018

Catalysts are the result of chemists seeking to unravel the beauty of molecules and the mystery of chemical reactions. Professor Jeong Young Park, whose research focuses on catalytic chemical reactions, is no exception. His ...

Recommended for you

Graphene's magic is in the defects

December 18, 2018

A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous ...

Carbon nanotubes mime biology

December 18, 2018

Cellular membranes serve as an ideal example of a system that is multifunctional, tunable, precise and efficient.

Deep learning democratizes nano-scale imaging

December 18, 2018

Many problems in physical and biological sciences as well as engineering rely on our ability to monitor objects or processes at nano-scale, and fluorescence microscopy has been used for decades as one of our most useful information ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

MJ3City
not rated yet Nov 21, 2018
Could anyone give me a hint what can be done with such particles? Could it be considered as an effective catalysator for car exhaust gas, a cheap one? There are workshops that cut out catalysators from cars and replace them with dummies just to extract noble metals.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.