Structure-ID technique could shift chemistry to warp speed

November 7, 2018, Howard Hughes Medical Institute
Michael Martynowycz, a postdoctoral researcher in Tamir Gonen’s lab, cools a sample with liquid nitrogen in preparation for a MicroED experiment that will reveal the sample’s molecular structure. Credit: Tamir Gonen

Work that previously could have taken chemists months can now be done in minutes.

Using a technique called microcrystal electron diffraction, or MicroED, scientists need just 30 minutes and a miniscule amount of sample to identify small and determine their structures. Such easy access to highly detailed information could revolutionize the way chemists, forensic scientists, and those involved in drug discovery work, says Howard Hughes Medical Institute (HHMI) Investigator Tamir Gonen.

The technique uses a standard cryo-electron microscope and could become scientists' go-to procedure for identifying everything from the products of routine chemical reactions to unknown powders at crime scenes, he says. "Now chemists can actually take powders directly from a reaction, apply them to a sample grid, and get high-resolution molecular structures the same day."

Gonen's team published the structures of 11 small molecules, determined by MicroED, November 2, 2018 in the journal ACS Central Science. The paper builds upon small molecule work the scientists published earlier this year and demonstrates the scope of MicroED technology, Gonen says.

Gonen’s lab used MicroED to quickly obtain the structure of powdered progesterone. First, they placed finely-ground progesterone (left) on a sample grid. Tiny crystals can be seen in a magnified view of the grid (center left). Electron beams scatter against the crystals, creating diffraction patterns (center right). Data processing reveals a highly detailed structure (right). Credit: C.G. Jones et al./ACS Central Science 2018
From powder to structure

Gonen's idea for the current project came over lunch with UCLA chemist Hosea Nelson. Gonen told him that, in the initial development of MicroED, his lab had determined the structure of a small organic molecule. Nelson, whose work as a chemist revolves around small molecules, "couldn't believe me when I told him it was pretty straightforward," Gonen says. So the two teamed up and decided to see how generally applicable MicroED was to chemistry and to alert the chemistry community of this technology.

Beginning with a jar of progesterone , they crushed a tiny amount and deposited it on a sample grid. Then, they cooled it to -196 degrees Celsius, transferred it to a , and started collecting data. Less than 30 minutes passed from opening the jar to seeing progesterone's structure, Gonen says. His team tested eight more commercial powders and obtained similar results, even after mixing several of them together.

Knowing that the powders had probably all been crystallized during manufacturing, the team wanted to test compounds that were instead newly synthesized, and not crystallized by scientists. They mixed four of these compounds, separated them via a common purification technique, and analyzed them by MicroED. The technique produced structures for two of the four compounds, which had formed crystals spontaneously. Gonen believes the other two might have worked had the team tried to crystallize them first.

Gonen doesn't see X-ray crystallography or other structure-identification methods going away anytime soon. Some samples will be more amenable to one method over another, and the information each method supplies varies in useful ways, he says. But now, the natural ability of to form crystals can be harnessed by chemists in a way that wasn't before possible.

"This is a perfect example of what happens when two fields that normally don't talk to one another get together and cross-pollinate," Gonen says.

Explore further: Tiny crystals could revolutionize structural biology studies

More information: Christopher G. Jones et al. The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination, ACS Central Science (2018). DOI: 10.1021/acscentsci.8b00760

Related Stories

Tiny crystals could revolutionize structural biology studies

November 20, 2013

For structural biologists, the first step in determining a protein's precise molecular structure is often the hardest: coaxing the protein to grow into the orderly, three-dimensional crystals that are the starting material ...

Kinetochore structure reveals how it takes hold

August 21, 2012

(Phys.org) -- With the first-ever three-dimensional image of an isolated kinetochore – the bulky molecular machine that connects a chromosome to the long, thin microtubules that tug it to one end of a dividing cell -- ...

Recommended for you

Scientists bring polymers into atomic-scale focus

November 12, 2018

From water bottles and food containers to toys and tubing, many modern materials are made of plastics. And while we produce about 110 million tons per year of synthetic polymers like polyethylene and polypropylene worldwide ...

Synthetic molecule invades double-stranded DNA

November 12, 2018

Carnegie Mellon University researchers have developed a synthetic molecule that can recognize and bind to double-stranded DNA or RNA under normal physiological conditions. The molecule could provide a new platform for developing ...

Nitrogen fixation in ambient conditions

November 12, 2018

Abundant in the atmosphere, nitrogen is rarely used in the industrial production of chemicals. The most important process using nitrogen is the synthesis of ammonia used for the preparation of agricultural fertilizers.

New catalyst turns pollutant into fuel

November 12, 2018

Rather than allow power plants and industry to toss carbon dioxide into the atmosphere, incoming Rice University assistant professor Haotian Wang has a plan to convert the greenhouse gas into useful products in a green way.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.