How invading jumping genes are thwarted

November 1, 2018, Carnegie Institution for Science
The team found that reproductive stem cells use a novel adaptive response to quickly tame the invading jumping gene elements by activating the so-called DNA damage checkpoint. That is a pause in the cell cycle, which allows for DNA repair. The images depict ovary morphology changes over time after jumping gene invasion, the DNA damage checkpoint pause, and the repair process that ensues after day four. Credit: Zhao Zheng Carnegie Institution for Science

Since Carnegie Institution's Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of jumping genes—called transposons. Given their ability of jumping around the genome in developing sperm and egg cells, their invasion triggers DNA damage and mutations. This often leads to animal sterility or even death, threatening species survival. The high abundance of jumping genes implies that organisms have survived millions, if not billions, of transposon invasions. However, little is known about where this adaptability comes from. Now, a team of Carnegie researchers has discovered that, upon jumping gene invasion, reproductive stem cells boost production of non-coding RNA elements (piRNA) that suppress their activity and activates a DNA repair process allowing for normal egg development. The results are published in the November 1, 2018, issue of Developmental Cell.

The researchers studied jumping genes in the fruit fly Drosophila melanogaster—a classic model to study jumping genes in developing sperm and . To set up a powerful system studying jumping gene adaptation, the researchers needed a tool to control their activity. It has been known for four decades that environmental temperature influences the severity of sterility in the fruit fly upon jumping gene invasion. At temperatures of 77 degrees F (25 degrees C) offspring have sterile ovaries, while at 64 degrees F (18 degrees C) offspring have fully developed and fertile ovaries.

"Because temperature had been widely known to affect sterility, we decided to quantify the rates of this jumping gene's activity at different temperatures. We discovered that the rate of jumping gene mobilization was seven times greater at 77 degrees F in ovarian stem , which means we can simply use temperature to control the invasion intensity from jumping genes," remarked Sungjin Moon, the first author of the paper.

The junior research group, led by Staff Associate, Zhao Zhang included Carnegie's Sungjin Moon, Madeline Cassani, Yu An Lin, Lu Wang, and Kun Dou. With this knowledge the team established the fly adult ovary as a powerful platform to uncover the underlying adaptation mechanism. They found that reproductive stem cells use a novel adaptive response to "rapidly tame" the invading elements by activating the so-called DNA damage checkpoint. This is a process that activates a pause in the cell cycle, before cell division, to repair damaged DNA. A checkpoint component, called Chk2, was found to be key. This pause in the repair process amplified the production of piRNA—those non-coding RNA elements that silence the jumping genes. They found that this pause period is necessary for adaptation and for permanently silencing the invading jumping , which allowed for normal egg production that could begin within four days.

"Jumping gene invasion triggers catastrophic genomic instability in all organisms," remarked Zhao Zhang. "They greatly reduce the viability or fertility of the invaded animals and can lead to a population crisis. We believe that the ability of reproductive stem cells to rapidly adapt and restore fertility in this manner allows species to resist such a population crash. This mechanism is a lynchpin to ."

Explore further: How do jumping genes cause disease, drive evolution?

Related Stories

How do jumping genes cause disease, drive evolution?

July 26, 2018

Almost half of our DNA sequences are made up of jumping genes—also known as transposons. They jump around the genome in developing sperm and egg cells and are important to evolution. But their mobilization can also cause ...

DNA protection, inch by inch

July 9, 2015

DNA within reproductive cells is protected through a clever system of find and destroy: new research published in Cell Reports today lifts the veil on how this is done.

Party discipline for jumping genes

September 22, 2017

Jumping genes, transposons, are part of the genome of most organisms, aggregated into families and can damage the genome by jumping. How hosts suppress the jumping is well investigated. Why they still can jump has hardly ...

Uncovering the role of the ilio-sacral joint in frogs

October 10, 2018

A trio of researchers, two with the Royal Veterinary College, the other the University of Portsmouth, has found evidence that suggests that the ilio-sacral joint in frogs evolved after they started jumping. In their paper ...

Cross species transfer of genes has driven evolution

July 9, 2018

Far from just being the product of our parents, University of Adelaide scientists have shown that widespread transfer of genes between species has radically changed the genomes of today's mammals, and been an important driver ...

Maelstrom quashes jumping genes

August 11, 2008

Scientists have known for decades that certain genes (called transposons) can jump around the genome in an individual cell. This activity can be dangerous, however, especially when it arises in cells that produce eggs and ...

Recommended for you

Geneticists solve long-standing finch beak mystery

November 19, 2018

Bridgett vonHoldt is best known for her work with dogs and wolves, so she was surprised when a bird biologist pulled her aside and said, "I really think you can help me solve this problem." So she turned to a mystery he'd ...

Space-inspired speed breeding for crop improvement

November 16, 2018

Technology first used by NASA to grow plants extra-terrestrially is fast tracking improvements in a range of crops. Scientists at John Innes Centre and the University of Queensland have improved the technique, known as speed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.