Griffith precision measurement takes it to the limit

November 5, 2018, Griffith University
Griffith University researchers have demonstrated a procedure for making precise measurements of speed, acceleration, material properties and even gravity waves possible, approaching the ultimate sensitivity allowed by laws of quantum physics. Credit: Griffith University

Griffith University researchers have demonstrated a procedure for making precise measurements of speed, acceleration, material properties and even gravity waves possible, approaching the ultimate sensitivity allowed by laws of quantum physics.

Published in Nature Communications, the work saw the Griffith team, led by Professor Geoff Pryde, working with photons (single particles of light) and using them to measure the extra distance travelled by the light beam, compared to its partner reference beam, as it went through the sample being measured—a thin crystal.

The researchers combined three techniques—entanglement (a kind of quantum connection that can exist between the photons), passing the beams back and forth along the measurement path, and a specially-designed detection technique.

"Every time a passes through the sample, it makes a kind of mini-measurement. The total measurement is the combination of all of these mini-measurements," said Griffith's Dr. Sergei Slussarenko, who oversaw the experiment. "The more times the photons pass through, the more precise the measurement becomes.

"Our scheme will serve as a blueprint for tools that can measure physical parameters with precision that is literally impossible to achieve with the common measurement devices.

Lead author of the paper Dr. Shakib Daryanoosh said this method can be used to investigate and measure other quantum systems.

"These can be very fragile, and every probe photon we send it would disturb it. In this case, using few photons but in the most efficient way possible is critical and our scheme shows how do exactly that," he said.

While one strategy is to just use as many photons as possible, that's not enough to reach the ultimate performance. For that, it is necessary to also extract the maximum amount of measurement information per photon pass, and that is what the Griffith experiment has achieved, coming far closer?to the so-called Heisenberg limit of precision than any comparable experiment.

The remaining error is due experimental imperfection, as the scheme designed by Dr. Daryanoosh and Professor Howard Wiseman, is capable of achieving the exact Heisenberg limit, in theory.

"The really nice thing about this technique is that it works even when you don't have a good starting guess for the measurement," Prof. Wiseman said. "Previous work has mostly focused a lot on the case where it's possible to make a very good starting approximation, but that's not always possible."

A few extra steps are required before this proof-of-principle demonstration can be harnessed outside the lab.

Producing entangled photons is not simple with current technology, and this means it is still much easier to use many photons inefficiently, rather than each set of entangled photons in the best way possible.

However, according to the team, the ideas behind this approach can find immediate applications in quantum computing algorithms and research in fundamental science.

The scheme can ultimately be extended to a larger number of , where the difference of the Heisenberg limit over the usually achievable limit is more significant.

Explore further: Measurement precision beats standard quantum limit

More information: Shakib Daryanoosh et al, Experimental optical phase measurement approaching the exact Heisenberg limit, Nature Communications (2018). DOI: 10.1038/s41467-018-06601-7

Related Stories

Measurement precision beats standard quantum limit

April 21, 2008

For physicists, measuring the precise magnitude of a physical quantity is a key to understanding quantum mechanics. However, there is a limit to how precise a measurement can be made, which is governed by quantum mechanical ...

Tracking down the mystery of entangled particles of light

June 14, 2018

Bernese researchers have taken an important step towards new measurement methods such as quantum spectroscopy. In an experiment, they succeeded in uncovering part of the mystery surrounding the so-called "entangled photons" ...

Quantum 'spooky action at a distance' becoming practical

January 5, 2018

A team from Griffith's Centre for Quantum Dynamics in Australia have demonstrated how to rigorously test if pairs of photons - particles of light - display Einstein's "spooky action at a distance", even under adverse conditions ...

Toward unbreakable encrypted messages

September 13, 2017

Chinese researchers recently announced a landmark advancement: They used a satellite orbiting Earth to beam pairs of quantum-entangled photons to two Tibetan mountaintops more than 700 miles apart. This distance blew the ...

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Hyperfuzzy
not rated yet Nov 07, 2018
Photons don't exist. That's your sampling method. Everything is definable. Known conditions, calculable! No uncertainty when using correct physics; errors only when you think particles are real.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.