Toward unbreakable encrypted messages

September 13, 2017, American Chemical Society

Chinese researchers recently announced a landmark advancement: They used a satellite orbiting Earth to beam pairs of quantum-entangled photons to two Tibetan mountaintops more than 700 miles apart. This distance blew the previous record out of the water. But according to an article in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, this is only the beginning for quantum communication.

The idea behind has been around since the 1960s. It involves using quantum- to send encrypted messages. Messages are encoded through a method called that enables the laws of physics to protect the information being delivered. This means if anyone intercepts and alters the message, the photons' properties will be changed as well, and this would be obvious to the recipient. But scientists are hindered by their ability to produce large numbers of entangled photons that can travel long distances. The Chinese satellite relied on an engineered crystal and laser to create the entangled photons, but the team only detected one pair of photons per 6 million pairs generated because of losses during transmission through the atmosphere.

While looking for more efficient photon sources, scientists have focused on single-photon emitters. Contenders include modified diamonds and quantum dots. The diamonds contain a "color center" defect, which means a glint of color is produced when light passes through. The problem is that only a fraction of light escapes the crystal. Quantum dots are another option, but they either require impractical cryogenic temperatures to operate or perform inconsistently. Researchers are also investigating ways to transmit entangled photons on Earth using fiber optics, by generating with carbon nanotubes. But further development is needed on all methods for quantum communications to become practical.

Explore further: Physicists use quantum memory to demonstrate quantum secure direct communication

More information: "Seeking materials to send unbreakable codes," cen.acs.org/articles/95/i36/Se … breakable-codes.html

Related Stories

New technique for creation of entangled photon states

February 15, 2017

Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. They have described their research in an article published in the journal Physical ...

Researchers develop ideal single-photon source

September 7, 2015

With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream ...

Recommended for you

Nanodiamonds as photocatalysts

October 19, 2018

Climate change is in full swing and will continue unabated as long as CO2 emissions continue. One possible solution is to return CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be ...

Producing defectless metal crystals of unprecedented size

October 19, 2018

A research group at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS), has published an article in Science describing a new method to convert inexpensive polycrystalline metal ...

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.