Explaining a fastball's unexpected twist

November 18, 2018, American Physical Society
The baseball in this illustration of a knuckleball pitch is moving to the left, leaving a wake trailing behind (i.e., to the right). The blue-colored air is rotating clockwise; the red air is rotating counterclockwise. The drag on the ball depends on the wake size, which depends in turn on the distance between the uppermost blue and lowermost red points. The upward wake means the ball is being pushed downward. Credit: Sakib and Smith

An unexpected twist from a four-seam or a two-seam fastball can make the difference in a baseball team winning or losing the World Series. However, "some explanations regarding the different pitches are flat-out wrong," said Barton Smith, a professor of mechanical and aerospace engineering at Utah State University who considers himself a big fan of the game.

He and his , Nazmus Sakib, are conducting experiments to explain how baseballs move. Sakib and Smith will present their findings at the American Physical Society's Division of Fluid Dynamics 71st Annual Meeting, which will take place Nov. 18-20 at the Georgia World Congress Center in Atlanta, Georgia.

A baseball is asymmetric owing to the figure-eight stitching pattern, and the way a baseball moves through the air depends on the degree and direction of its spin and its orientation when the hand releases it. The Magnus effect, or the force on a spinning object moving through a fluid like air, pushes in the direction that the front of the ball is spinning. So it causes a ball with topspin to drop and a ball with backspin to gain some lift—enough to slow its fall, but not enough to overcome gravity.

This well-studied phenomenon affects most pitches except for the virtually spin-free knuckle ball, which is gripped with the thumb and fingertips. The two-seam fastball, which is gripped by the middle and index fingers along the seams, seemed to also behave in a way not explained by the Magnus effect.

Two snapshots are taken 20 microseconds apart, soon after a baseball is launched through a smoke-filled chamber. Credit: Sakib and Smith

Sakib and Smith focus on these two pitches, which are influenced by forces other than the Magnus effect. In their study, the researchers set up a pitching machine that hurls fastballs and knuckleballs through a smoky path. Automatic photographs, triggered by laser sensors, captured two images of the ball and smoke after release. Then, using a technique called , Sakib and Smith tracked the movements of the smoke particles to compute the velocity field around the ball and the direction of the rotating air at a given spot.

Then, they computed the "boundary layer separation" by identifying the portions of the ball's surface where the layer of air surrounding the ball had separated to form the wake. While the boundary layer separation varies differently for the two fastball pitches as the ball rotates, the net effect is the same.

Sakib and Smith found that the two-seam pitch has a tilted spin axis due to the fact that one finger leaves the seam before the other, which can cause the ball to move sideways, unlike a four-seam fastball. In the case of the knuckleball, the point of separation can change midflight, causing the to randomly shift directions.

Smith is now "hoping to meet a major league pitcher who wants to use what we've learned through fluid dynamics to throw a better ."

Explore further: How long do batters 'keep their eye on the ball'? Eye and head movements differ when swinging or taking a pitch

More information: Presentation E17.1, "Velocity fields of pitched baseballs using Particle Image Velocimetry" by Nazmus Sakib and Barton Smith, will be Sunday, Nov. 18, 5:10 p.m. in Room B304 of the Georgia World Congress Center in Atlanta. Abstract: http://meetings.aps.org/Meeting/DFD18/Session/E17.1

Related Stories

Physicists cast new light on spin-bowling

July 4, 2013

(Phys.org) —As the Ashes series gets underway next week, a pair of brothers from Australia have been exploring the physics behind the spin of a cricket ball.

It’s not just cricket – actually it's physics

October 6, 2006

Ever wanted to face a Shane Warne spin delivery or smash a Glen McGrath speed bowl? A new bowling simulator may enable you to do just that. The machine is the first of its kind to use physics, real cricket balls and novel ...

Physicists revisit spin-bowling puzzle

July 21, 2016

Latest calculations reveal why small variations in the rotation of the ball applied by slow bowlers in cricket can cause batsmen big problems even before deliveries have pitched on the ground

Physicists investigate home run increase

June 25, 2018

Home run rates in Major League Baseball have increased steadily since 2015. In 2017, the rate was 35 percent greater than it was before the All-Star Game in 2015. To understand the reason behind this sudden surge, the organization ...

Recommended for you

Focus on this: Team increases X-ray laser focusing ability

December 19, 2018

An X-ray free-electron laser (XFEL) is an X-ray produced by a beam of free electrons that have been accelerated almost to the speed of light. XFELs produce laser beams with exceedingly high peak power intensity, which makes ...

Magnetoresistance ratio enhancement in Heusler-based alloy

December 18, 2018

Magnetic field sensors can enhance applications that require efficient electric energy management. Improving magnetic field sensors below the picoTesla range could enable a technique to measure brain activity at room temperature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.