# Physicists revisit spin-bowling puzzle

##### July 21, 2016, Institute of Physics

Latest calculations reveal why small variations in the rotation of the ball applied by slow bowlers in cricket can cause batsmen big problems even before deliveries have pitched on the ground

Spin bowlers in cricket are masters at making the ball loop slowly through the air to confuse batsmen. Legends of the game know the magic combinations of top-, side-spin and off-spin necessary to fool the opposition, but some clever calculations by physicists in Australia could help to share this knowledge with a wider audience.

Ian and Garry Robinson - Honorary Fellows at Victoria University in Melbourne and the University of New South Wales, respectively - have been busy using mathematics to shine a light on the secrets of spin-bowling. In their latest work, published in the journal Physica Scripta, the brothers highlight the significance of small variations in the proportion of different spin types applied to the ball by slow bowlers in cricket.

To calculate the various flight paths, the scientists consider a number of forces acting on the ball. These include a gravity force, operating vertically downwards; a drag force, which opposes the motion and is in the opposite direction to the ball's velocity vector; and finally, when the ball is spinning, a lift or Magnus force.

Top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways through the air and, perhaps most importantly in cricket, off-spin can cause the ball to drift across the pitch towards the end of the delivery, drawing the batsman into a more vulnerable position.

Once their numerical analysis had confirmed some of the more well-known details of the game, the researchers were ready to examine spin-bowling at a subtler level.

"We found that if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, the length at which the ball pitches can be reduced by as much as 25 cm - an amount that batsmen can ignore at their peril - despite little change being observed in the side-ways drift," revealed Ian Robinson. "On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but can produce 10 cm or more of side-ways drift."

They considered other combinations too. "When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres," highlighted Garry Robinson.

The physicists hope that their analysis will give newcomers to spin-bowling a helping hand in mastering the variety of deliveries necessary to keep batsmen guessing. Tennis players might also benefit from the work (on this theme, also check out - "Radar speed gun true velocity measurements of sports-balls in flight: application to tennis" by Garry Robinson and Ian Robinson 2016 Phys. Scr. 91 023008 - which can be downloaded via the journal's homepage).

Explore further: Physicists cast new light on spin-bowling

More information: Garry Robinson et al. Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles, Physica Scripta (2016). DOI: 10.1088/0031-8949/91/8/083009

## Related Stories

#### Physicists cast new light on spin-bowling

July 4, 2013

(Phys.org) —As the Ashes series gets underway next week, a pair of brothers from Australia have been exploring the physics behind the spin of a cricket ball.

#### Knuckleball machine delivers soccer science

July 12, 2016

Wind tunnel and high-speed camera data help researchers to explore the zigzag secrets of one of football's most unpredictable shots and provide clues to much older scientific mysteries

#### 'History Minute' that proved baseballs really do curve

July 13, 2016

(Phys.org)—The National Institute of Standards and Technology has released a "History Minute" video called "Thrown for a Curve," offering a recap of work done by Lyman Briggs and colleagues back in 1959, when he was head ...

#### Long-distance transport of electron spins for spin-based logic devices

April 5, 2016

Almost all electronic devices operate by using an electron charge controlled by electrical means. In addition to a charge, an electron has a spin as a magnetic property. A groundbreaking concept for information processing ...

#### How fast can stars spin?

July 12, 2016

Everything in the universe is spinning. Spinning planets and their spinning moons orbit around spinning stars, which orbit spinning galaxies. It's spinning all the way down.

#### Researchers propose new method for creating extremely strong spin currents

May 24, 2016

In our computer chips, information is transported in form of electrical charge. Electrons or other charge carriers have to be moved from one place to another. For years scientists have been working on elements that take advantage ...

## Recommended for you

#### The best topological conductor yet: Spiraling crystal is the key to exotic discovery

March 20, 2019

The realization of so-called topological materials—which exhibit exotic, defect-resistant properties and are expected to have applications in electronics, optics, quantum computing, and other fields—has opened up a new ...

#### ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

#### How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

#### Researchers use muon detector to measure electric potential in a thunderstorm

March 19, 2019

A team of researchers from several institutions in India and Japan has found that it is possible to use a muon detector to measure electric potential in thunderstorms. The paper is published in the journal Physical Review ...

#### Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

#### Sea quark surprise reveals deeper complexity in proton spin puzzle

March 15, 2019

New data from the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) add detail—and complexity—to an intriguing puzzle that scientists have been seeking to solve: how the building blocks that make up a proton ...

#### Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...