Knuckleball machine delivers soccer science

July 12, 2016, Institute of Physics

Wind tunnel and high-speed camera data help researchers to explore the zigzag secrets of one of football's most unpredictable shots and provide clues to much older scientific mysteries

The zigzag trajectory of knuckleballs through the air has bamboozled goalkeepers and batsmen the world over. Scientists have been puzzled too by these strange shots and pitches, which are delivered at relatively slow speeds with little or no spin and yet travel in such an unpredictable way.

Could the seams on the ball play a contributing role? Possibly, but this doesn't explain reports of zigzag trajectories being achieved using balls without them. In a recent article published in the New Journal of Physics, researchers in France have developed a more universal explanation based on unsteady lift forces. Their work also addresses the question of why knuckleballs have only been witnessed in soccer, volleyball and baseball, and not in other ball games such as table tennis, squash and basketball.

To tackle the problem, the researchers - who are based at Ecole Polytechnique and ESPCI ParisTech in the French capital - used custom-built knuckleball apparatus for delivering balls at different velocities through the air. This so-called kicking machine - developed by Caroline Frot, Antoine Garcia, Caroline Cohen, and Baptise Darbois Texier of Ecole Polytechnique's Hydrodynamic Laboratory (LadhyX) - comprised an electric motor, a steel arm and a flat plate. Critically, the design allowed the scientists to launch balls with a very small amount of spin, less than a tenth of a rotation along the entire trajectory of each delivery. The group used a to capture the motion of each ball and employed a wind tunnel to measure air flow behaviour.

Unsteady forces

Solving the equations of motion for each dataset, the scientists found that the results obtained using the camera and were consistent with the presence of unsteady lift forces, but this was only part of the story. "Unsteady lift forces are inherent to balls traveling through the air in every sport, so to complete our work we needed to find out why zigzag shots are associated with just a few games, such as soccer or baseball," commented Baptise Darbois Texier.

To discover the answer, the team went back and calculated the mean lateral deviation of the ball and the typical wavelength of the corresponding zigzag path for various angles and velocities of launch. By comparing the wavelength of the zigzag path with the typical shooting distance found in each sport, the researchers were able to account for why knuckleballs are not seen in games of bocce, handball or basketball. "In bocce, for example, a zigzag path should occur over a length of 27 m, but this distance is much longer than the typical shooting length and so the knuckleball effect will be incomplete," explained Darbois Texier.

Velocity window

Furthermore, the researchers showed that even if unsteady lift forces are always present for non-spinning sport balls, there is a particular range of velocities where are larger. Under these conditions, intermittent reattachment of the boundary layer around the ball generates temporarily asymmetric forces on the object, encouraging side-to-side movement. This amplification generates the large lateral deviation in the path of the ball, which can be so confusing to opponents on the sports field. Also, the behaviour diminishes once spin is introduced, which explains why top players go to great lengths to avoid rotating the ball when attempting deliveries with a zigzag trajectory.

Older puzzles

But it's not just sports that benefit from the group's analysis. The research may also help to answer much older scientific puzzles such as why the rotation of the Earth was eventually revealed using a pendulum rather than by free fall experiments as suggested by Newton. "Any ball that you release in air will flutter after a while and produce some zigzag, which has a physical origin similar to the 'knuckleball' effects we have studied here," said Christophe Clanet, who leads the LadHyX team. "These zigzags are larger than the deviation induced by the Coriolis force arising from the Earth's rotation, which helps to explain why numerous free fall experiments failed to produce the desired results."

The group plans to examine this historical perspective in more detail in its next research article on this theme.

Explore further: What's behind the success of the soccer 'Knuckleball'

More information: Baptiste Darbois Texier et al. Physics of knuckleballs, New Journal of Physics (2016). DOI: 10.1088/1367-2630/18/7/073027

Related Stories

What's behind the success of the soccer 'Knuckleball'

November 16, 2012

What makes soccer star Cristiano Ronaldo's "knuckleball" shot so unpredictable and difficult to stop? At the American Physical Society's (APS) Division of Fluid Dynamics (DFD) meeting, November 18 – 20, 2012, in San Diego, ...

Explained: How does a soccer ball swerve?

June 16, 2014

It happens every four years: The World Cup begins and some of the world's most skilled players carefully line up free kicks, take aim—and shoot way over the goal. The players are all trying to bend the ball into a top corner ...

Physicists cast new light on spin-bowling

July 4, 2013

(Phys.org) —As the Ashes series gets underway next week, a pair of brothers from Australia have been exploring the physics behind the spin of a cricket ball.

What does physics reveal about the sizes of sports fields?

April 7, 2014

(Phys.org) —From ping pong tables to golf courses, the sizes of sports fields vary widely. Although the sizes of sports fields were originally defined empirically—that is, by simply playing the sport rather than performing ...

Recommended for you

The hunt for leptoquarks is on

September 19, 2018

Matter is made of elementary particles, and the Standard Model of particle physics states that these particles occur in two families: leptons (such as electrons and neutrinos) and quarks (which make up protons and neutrons). ...

Searching for errors in the quantum world

September 19, 2018

The theory of quantum mechanics is well supported by experiments. Now, however, a thought experiment by ETH physicists yields unexpected contradictions. These findings raise some fundamental questions—and they're polarising ...

Fiber optic sensor measures tiny magnetic fields

September 19, 2018

Researchers have developed a light-based technique for measuring very weak magnetic fields, such as those produced when neurons fire in the brain. The inexpensive and compact sensors could offer an alternative to the magnetic ...

Researchers push the boundaries of optical microscopy

September 19, 2018

The field of optical microscopy research has developed rapidly in recent years. Thanks to the invention of a technique called super-resolution fluorescence microscopy, it has recently become possible to view even the smaller ...

Extremely small and fast: Laser ignites hot plasma

September 19, 2018

When light pulses from an extremely powerful laser system are fired onto material samples, the electric field of the light rips the electrons off the atomic nuclei. For fractions of a second, a plasma is created. The electrons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.