Coherent electron trajectory control in graphene

November 27, 2018, University of Erlangen-Nuremberg
The driving laser field (red) 'shakes' electrons in graphene at ultrashort time scales, shown as violet and blue waves. A second laser pulse (green) can control this wave and thus determine the direction of current. Credit: FAU/Christian Heide

Electronic systems using light waves instead of voltage signals is advantageous, as electromagnetic light waves oscillate at petaherz frequency. This means that future computers could operate at speeds 1 million times faster than today's. Scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have now succeeded in using ultra-short laser impulses to precisely control electrons in graphene.

Current control in electronics that is 1 million times faster than in today's systems is a dream for many. Current control is responsible for data and signal transmission. However, until now, it has been difficult to control the flow of in metals, as metals reflect light waves, which therefore cannot influence the electrons inside the metal conductor.

Physicists at FAU have therefore turned to graphene, a semi-metal that comprises only one single layer of carbon and is so thin that light can penetrate and set electrons in motion. In an earlier study, physicists at the Chair for Laser Physics had already succeeded in generating an electric signal at a of only one femtosecond by using a very short laser . This is equivalent to one millionth of one billionth of a second. In these extreme time scales, electrons reveal their quantum nature as they behave like a wave. The wave of electrons glides through the material as it is driven by the laser pulse.

The researchers went one step further in the current study. They aimed a second laser pulse at this light-driven wave. This second pulse enabled the electron wave to pass through the material in two dimensions. The second laser pulse can be used to deflect, accelerate or even change the direction of the electron wave. This enables the transmission of information by this wave, depending on the exact time, strength and direction of the second pulse.

According to the researchers, it's possible to go one step further. "Imagine the electron wave is a wave in water. Waves in water can split because of an obstacle and converge and interfere when they have passed the obstacle. Depending on how the sub-waves stand in relation to one another, they either amplify or cancel each other out. We can use the second laser pulse to modify the individual sub-waves in a targeted manner and thus control their interference," explains Christian Heide from the Chair of Laser Physics. "In general, it's very difficult to control quantum phenomena, such as the wave characteristics of electrons in this instance. This is because it's very difficult to maintain the electron wave in a material as the electron wave scatters with other electrons and loses its wave characteristics. Experiments in this field are typically performed at extremely low temperatures. We can now carry out these experiments at room temperature, since we can control the electrons using pulses at such high speeds that there is no time left for the scatter processes with other electrons. This enables us to research several new physical processes that were previously not accessible."

The have made significant progress toward realising electronic systems that can be controlled using . In the next few years, they will be investigating whether electrons in other two-dimensional can also be controlled in the same way. "Maybe we will be able to use materials research to modify the characteristics of materials in such a way that it will soon be possible to build small transistors that can be controlled by ," says Heide.

Explore further: The fastest light-driven current source

More information: Christian Heide et al, Coherent Electron Trajectory Control in Graphene, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.121.207401

Related Stories

The fastest light-driven current source

September 26, 2017

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons controlled at high speed. Demands on transmission speeds are also increasing as technology develops. ...

Processes in the atomic microcosmos revealed

May 16, 2018

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. They used optical traveling waves formed by laser pulses of varying wavelengths. ...

The wave nature of light in super-slow motion

July 12, 2017

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Friedrich Schiller University Jena (FSU) have accomplished a quantum leap in light research. They have managed to capture the behaviour of extremely ...

Laser light needs more bass

May 21, 2014

They shed light on atomic and molecular processes: ultrashort laser pulses are required to study extremely fast quantum phenomena. For years, scientists have been trying to tune the shape of light waves so as to, for instance, ...

Electrons used to control ultrashort laser pulses

March 21, 2017

We may soon get better insight into the microcosm and the world of electrons. Researchers at Lund University and Louisiana State University have developed a tool that makes it possible to control extreme UV light - light ...

Recommended for you

Graphene's magic is in the defects

December 18, 2018

A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous ...

Carbon nanotubes mime biology

December 18, 2018

Cellular membranes serve as an ideal example of a system that is multifunctional, tunable, precise and efficient.

Deep learning democratizes nano-scale imaging

December 18, 2018

Many problems in physical and biological sciences as well as engineering rely on our ability to monitor objects or processes at nano-scale, and fluorescence microscopy has been used for decades as one of our most useful information ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.